
	Competency Paper

	Owner: Sterling Mullis
Writer/Reviewer: Suzanne Miller
	Date: 13 April 2014

	Competency 10: Software Development Methods

	

	Competency Element:

	[bookmark: _GoBack]10.1 Applies and/or assesses appropriate software methodologies (i.e. Waterfall, Spiral Model, Agile, etc.) to establish reasonable and practical expectations for the government.

	Element Issues (DAU): List ambiguities, misunderstandings, etc. to help IT FIPT next time they update competencies

	NONE.

	Acquisition Workforce IT Qualification Standard Product and Tasks related to Product (DAU)

	10-1 Document and recommend a preferred software development methodology.

1. Identify program objective, system requirements and design alternatives for the subject acquisition.

2. Analyze and assess software development methodologies for adoption by a project relative to the operational concept and in conjunction with the currently acceptable acquisition program models.

3. Analyze options for adopting specific software development methodologies with consideration for risk, cost, and benefits.

4. Select and document a reasonable and practical expectation for the preferred software development methodology, and recommend to decision maker.

	AWQI References (DAU)

	· DODI 5000.02, ISO/IEC 12207, Condensed GSAM Handbook.
· Here
· Here

	Assumptions (DAU)

	Although the government does not specify the processes by which an offeror conducts their work, the government also must be able to interact effectively with offerors based on resource availability for oversight. This typically means that the government program office has a methodology in mind that is suitable to the needs of the program and reasonable to support by the program office staff.

	TLO (Job Product or Service) (DAU; SME can make recommendations)
	BLOOM/COURSE

	TLO 10.1.1 Given a Department of Defense (DoD) Information Technology (IT) acquisition scenario, evaluate various software development methodologies.
	BLOOM: 5

	ELO(s) with Major Takeaway (MT) (tasks which are required to build the product or service) (DAU)

	ELO 10.1.1.1 Given a list of software methodologies, match the software methodology best suited for the attributes of a given development project.

MT1.1. There is not one software methodology that can be used for all software development projects.

MT1.2. Identify key characteristics of each software development methodology and in which instances they are best suited.

MT1.3. Identify the attributes of the project in relation to the key characteristics for each methodology under consideration.

Assessment Strategy: QUIZ
	BLOOM: 2
Level 1 (ISA101)

	ELO 10.1.1.2 Given an IT acquisition scenario, identify the most appropriate software methodology (or a combination of methodologies) to meet the expectations of the government.

MT2.1. Even though a program has started you need to continually reassess your software development methodology to ensure it continues to meet operational / user needs.

MT2.2. Even moderately complex projects typically require a combination of software development approaches to provide the most value to the end user and other key acquisition stakeholders.

MT2.3. DoD guidance doesn’t specify which software development methods must be used with any of the life cycle models elaborated in DoD policy documents such as DoD 5000.02. That decision should be made based on project characteristics.

Assessment Strategy: Facilitation, Case Study
	BLOOM: 3
Level 2 (ISA201)

	ELO 10.1.1.3 Given an IT acquisition scenario, recommend changes to an existing software development capability release plan to increase the likelihood of defined success measures.

MT3.1. There is rarely a single “correct” release plan

MT3.2. Establish time boxed release schedules (fix cost and schedule and push capability to the next release). As more information is gathered on the project your release plan will likely change to meet the needs of technology and / or the customer- this is a good thing.

Assessment Strategy: CASE
	BLOOM: 4
Level 3 (ISA320)

	MAJOR TAKEAWAYS (MT) with REFERENCES and CONTENT (Subject Matter Expert (SME))

	MT1.1. There is not one software methodology that can be used for all software development projects.

Content?
Reference?

MT1.2. Identify key characteristics of each software development methodology and in which instances they are best suited.

Content?
Reference?

MT1.3. Identify the attributes of the project in relation to the key characteristics for each methodology under consideration.

Content?
Reference?

MT2.1. Even though a program has started you need to continually reassess your software development methodology to ensure it continues to meet operational / user needs.

Content?
Reference?

MT2.2. Even moderately complex projects typically require a combination of software development approaches to provide the most value to the end user and other key acquisition stakeholders.

Content?
Reference?

MT2.3. DoD guidance doesn’t specify which software development methods must be used with any of the life cycle models elaborated in DoD policy documents such as DoD 5000.02. That decision should be made based on project characteristics.

Content?
Reference?

MT3.1. There is rarely a single “correct” release plan

Content?
Reference?

MT3.2. Establish time boxed release schedules (fix cost and schedule and push capability to the next release). As more information is gathered on the project your release plan will likely change to meet the needs of technology and / or the customer- this is a good thing.

Content?
Reference?

Characterizing projects when considering software development methods
There are many ways to characterize projects that include software development. Some dimensions that are important to selecting an effective software development method include:
· Stability of technology base (how quickly is the base technology expected to evolve?)
· Stability of program office leadership and staff (what is the rhythm of program office staff and leadership rotating to other programs?
· Availability of support contractors (SETAs, FFRDCs) to provide continuity within the program office
· Anticipated duration of initial development project (if a new product acquisition)
· Anticipated life span of product
· Size and number of contractors to be managed
· Level of change being experienced in the operational environment the product will be fielded to
· Degree and frequency of expected requirements changes during the life of the program
· Cultural norms of the developer and program office (how collaboratively are both parties willing to work?) (Lapham et al, 2010, 2011)
· Contracting constraints
· Alignment of software acquisition goals with the larger program, where software is a component of a larger hardware-based system (typically termed embedded systems)
· Alignment of acquisition goals (for delivery, functionality, funding) with operational goals
Process models for software development:
A process model answers two main questions: ·What should be done next? For how long should it continue (Boehm, 2000)? The following process model descriptions are generalized and have elements that can be combined to suit a particular acquisition or development situation. They can be performed within the context of any of the life cycles elaborated in DoD guidance such as DoD 5000.02, which, in its interim form, calls out six different life cycle models that can be used to begin tailoring for a particular acquisition. In the first section, commonly used approaches are defined in terms of their major characteristics. In the second section, we discuss relevant aspects of the common approaches that students are likely to encounter in their tasks.
Waterfall or Traditional: The waterfall / traditional methodology was introduced in a paper from Winston Royce (Royce, 1970). Waterfall is generally practiced as a linear approach to software development. In this methodology, the general sequence of events is something like:
1.Gather and document requirements
2.Design the architecture and components of the system
3.Code and unit test the components
4.Perform integration and system testing
5.Perform user acceptance testing (UAT)
6.Fix any issues (throughout)
7. Deliver the finished product (Lotz, 2013).
Waterfall approaches can be applied to small or large projects. When applied to larger projects, considering how the project can be broken up into smaller increments is typical.
When multiple small waterfall cycles that result in fieldable software are sequenced together, the approach is usually termed “incremental”. Note, however, that incremental is more a definition of release sequencing than an actual development approach.
Spiral: a family of software development processes characterized by repeatedly iterating a set of elemental development processes and managing risk so it is actively being reduced. The spiral development model is a risk-driven process model generator. It is used to guide multi-stakeholder concurrent engineering of software intensive systems. It has two main distinguishing features. One is a cyclic approach for incrementally growing a system's degree of definition and implementation while decreasing its degree of risk. The other is a set of anchor point milestones for ensuring stakeholder commitment to feasible and mutually satisfactory system solutions. Risks are situations or possible events that can cause a project to fail to meet its goals.
They range in impact from trivial to fatal and in likelihood from almost certain to improbable. A risk management plan enumerates the risks and prioritizes them in degree of importance, as measured by a combination of the impact and likelihood of each. For each risk the plan also states a mitigation strategy to deal with the risk. For instance, the risk that technology is unready may be mitigated by an appropriate prototype implementationn an early spiral cycle.
Agile: The White House document on innovative contracting case studies defines states “Agile is both a philosophy and an umbrella term for a collection of methods or approaches that share certain common characteristics (Alliance, 1998; Budget, 2014).” At its core, the agile philosophy is based on 4 values and 12 principles described in the Agile Manifesto ("Manifesto for Agile Software Development," 2012). Because Agile is based on principles rather than practices in a defined sequence, there is no accepted criteria or “checklist” to determine if an organization is using agile development methods. The Agile Manifesto only lays the ground work for a collection of methods such as: Scrum, eXtreme Programming (XP), Dynamic Systems Development Method (DSDM), etc. Even within these software development methodologies there is a high degree of variance in underlying implementations due to their ability to adapt to different product and development contexts. So simply stating that someone is “using agile development” provides little information as to their actual development practices. Providing the exact method being used, such as Scrum, provides more details regarding the likely agile implementation; however, it’s not until you know how the organization is implementing the agile method that you can identify which agile practices they are using and, most importantly, how they are being used. Description of particular Agile methods is found in the Discussion section below.

Discussion of attributes of each of the common life cycle approaches:
Evolution from Waterfall to Agile
Initially the waterfall software development methodology was used where software was developed in one long release cycle (Royce, 1970, p. 330), as shown in Figure 4. It mimics the main stages that are needed to develop hardware. The waterfall software development methodology elaborates fundamental steps required to develop software. However, as Royce stated in the original paper, it has one major flaw in that it assumes that once the requirements process is complete, the requirements will remain unchanged throughout the development lifecycle. Royce acknowledged that this assumption rarely holds true in practice, as change is inevitable in all large software projects (Sommerville, 2004, p. 71).
[image: C:\Users\Matthew.R.Kennedy\Desktop\Waterfall.png]
[bookmark: _Ref266632024][bookmark: _Toc341284177]Figure 4 Waterfall Software Development Model (Royce, 1970, p. 330)
Long, waterfall-like development cycles do not allow for inevitable requirement changes. Breaking software development cycles into a series of increments allows one to better adapt to changing requirements.
In the incremental model, an increment is a potentially shippable piece of functionality. Incremental delivery allows the user to gain value from a portion of the system prior to the entire system being released (Figure 5).
There are several advantages to the incremental model (Center, 2003, pp. 2.5 - 2.6):
1) Requirements are relatively stable and may be better understood with each increment if the increment is appropriately scoped;
2) Allows some requirements modification and may allow the addition of new requirements as system attributes are learned about with the implementation of each increment;
3) More responsive to user needs than the waterfall model;
4) A usable product is available with the first release, and each cycle results in greater functionality;
5) The project can be stopped any time after the first cycle and leave a working product;
6) Risk is spread out over multiple cycles;
7) This method can usually be performed with fewer people than the waterfall model;
8) Return on investment is visible earlier in the project;
9) Project management may be easier for smaller, incremental projects;
10) Testing may be easier on smaller portions of the system.
11) Incremental life cycle can be a frame for Waterfall, Spiral, or Agile methods. (Fig 5 shows it from a Waterfall viewpoint.)

[image: Picture3]
[bookmark: _Ref340342638][bookmark: _Toc341284178]Figure 5 Incremental Development
Though seen as an improvement over the waterfall software development methodology, the incremental approach has several disadvantages, namely that the majority of requirements must be still be known up front (Center, 2003, p. 2.6).
	While incremental development provides several advantages over the traditional waterfall development model, the software engineering community determined that something else was needed in order to better respond to the rapid change in technology and user needs. Thus, to increase the responsiveness with the software process, the software community has moved toward agile development. Agile development adds in the concept of short iterations (periods where a small portion of the software is evolved) to the concept of incremental delivery.
“Agile software development” is a broad term used to describe development methodologies that adhere to a set or subset of principles defined by The Agile Manifesto (Schwaber & Beedle, 2002). The Agile Manifesto was formed when a group of twelve experienced software methodologists calling themselves the Agile Alliance gathered to find an alternative to the current documentation-driven, lengthy and complex software development process (Schwaber & Beedle, 2002). Through this effort they framed the following set of values to improve the way software is developed ("Manifesto for Agile Software Development," 2012):
1) Individuals and interactions over processes and tools;
2) Working software over comprehensive documentation;
3) Customer collaboration over contract negotiation;
4) Responding to change over following a plan.
The Agile Manifesto states: “While there is value in the items on the right, we value the items on the left more” ("Manifesto for Agile Software Development," 2012). It is not that there isn’t any value in comprehensive documentation, simply that there is more value in working software. As with most software development efforts there are tradeoffs that need to be made throughout the process. It is when analyzing these tradeoffs that the items on the left provide more value than the items on the right.
The Agile Manifesto also defines a set of principles which is used to separate agile practices from their more heavyweight counterparts ("Manifesto for Agile Software Development," 2012):
1) Our highest priority is to satisfy the customer through early and continuous delivery of valuable software;
2) Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage;
3) Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale;
4) Business people and developers must work together daily throughout the project;
5) Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done;
6) The most efficient and effective method of conveying information to and within a development team is face-to-face conversation;
	7) Working software is the primary measure of progress;
8) Agile processes promote sustainable development. The sponsors, developers and users should be able to maintain a constant pace indefinitely;
9) Continuous attention to technical excellence and good design enhances agility;
10) Simplicity--the art of maximizing the amount of work not done--is essential;
 11) The best architectures, requirements and designs emerge from self-organizing teams;
 12) At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.
The application of these principles varies in practice as there is no predetermined number of principles a development methodology must utilize to be deemed “agile”. There are several agile development methodologies in use today, though a survey conducted by Version One, which included 1681 individuals and 71 countries, found Scrum and eXtreme Programming (XP) to be the most widely followed methodologies (One, 2007, p. 5).
Scrum
Scrum is an overarching team-focused process used for project management which is designed for projects where it is difficult to look ahead (Moe, Dingsoyr, & Dyba, 2008, p. 77). It provides a framework (Figure 6) within which development activities will be executed. Scrum is comprised of self-organizing and self-managing teams that release a potentially shippable product in sprints (iterations) of two-to-four weeks.
The process starts with a product backlog (requirements) that is prioritized by the user prior to the start of each sprint. (How the product backlog comes into existence depends on how the overall system development is being executed.)The development team then selects what can be accomplished within the designated sprint duration but the team must select the requirements in the order specified by the user via their ranking of the product backlog items (They are not allowed to have multiple “priority 1” items). These selected requirements, plus a plan for delivering the product Increment and realizing the Sprint Goal. then become the sprint backlog. The Sprint Backlog is a forecast by the Development Team about what functionality will be in the next Increment and the work needed to deliver that functionality (Scrum Guide 2011) [image: scrum framework diagram]
[bookmark: _Ref340318674][bookmark: _Ref274428010][bookmark: _Toc341284179]Figure 6 Scrum Framework ("The SCRUM Process | SCRUM Framework," 2012)
 Extreme Programming
Whereas Scrum is a process to manage a product, eXtreme Programming (XP) is an agile development methodology focused toward software development as a whole, including the engineering aspects of software development. XP is one of the most well-documented agile methodologies consisting of a set of rules that can be summarized around the following topics (Cohen, Lindvall, & Costa, 2003, p. 8):
	The Planning Game
	Refactoring
	Small Releases
	Metaphor

	40-hour Weeks
	Collective ownership
	Pair Programming
	Open Workspace

	On-site customer
	Continuous Integration
	Simple Design
	Tests

There is no set number of rules that need to be practiced by a team to claim they are doing XP (Wolak, 2001, pp. 6-7). However, the strength of XP is in the combination of the rules and not solitary implementation (Cohen et al., 2003, p. 13).
Crystal
	Crystal is an iterative and incremental development methodology that is heavily focused on people and interaction developed by Alistair Cockburn based on retrospectives of dozens of successful and unsuccessful IBM projects of the 1990s. (Krebs, 2008, p. 18). Crystal maximizes face-to-face communication to reduce the need for large amounts of documentation and improve the likelihood of delivering the system (Cohen et al., 2003, p. 15). It defines a series of color schemes, each containing a set of roles, work products and techniques based on the criticality and the number of people involved (Cohen et al., 2003, p. 16). The color scheme ranges from maroon to clear, where maroon is for large projects and clear is for small projects, in terms of the number of people involved (Sliger & Broderick, 2008, p. 297). Crystal is most frequently applied in the small team level.
Both Scrum and XP primarily describe practices that are consistent with the Agile principles and that are applied at the team level. Crystal is defined to include multiple sizes of projects, but is most often applied to small teams. In most DoD programs, software development cannot be done with a single small team (7 + or – 2 members is typical). Once you start coordinating multiple development teams, you get into the realm of “scaling” your Agile approach to the size needed to meet your program’s needs. There are two scaling frameworks that are commonly seen in DoD settings – Scaled Agile Framework for Enterprises (SAFE), and Driving Strategy, Delivering More’s Agile Project Framework (DSDM). A third scaling approach, Disciplined Agile Delivery (DAD), is also most commonly seen in settings that are already using the Rational Unified Process, a proprietary methodology from IBM. SAFE and DSDM are briefly described below.
Scaled Agile Framework for Enterprises (SAFE)
SAFE is an evolving framework of enterprise, program, and team-level practices that is based on a combination of lean (see Other Philosophies section below) and Agile principles and practices. It is currently the most used scaling framework in DoD (based on anecdotal evidence from the SEI, 2014). Its team practices are founded in Scrum. It explicitly adds the concept of planned and evolving architecture into its enterprise and release aspects, and it addresses portfolio level development issues as well as individual program issues. Its portfolio level makes use of explicit lean concepts such as value stream mapping and Kanban. It is an actively evolving framework. As of 2014, the concept of Continuous Systems Engineering was being added to its overall development approach. (www.scaledagileframework.com)
Dynamic Systems Development Methodology
	Driving Strategy, Delivering More’s (DSDM) Agile Project Framework is based on Rapid Application Development (RAD) with a heavy reliance on prototyping and provides a framework for delivering quality solutions quickly (Krebs, 2008, p. 16). The DSDM is an iterative and incremental process whose principles can be considered the European equivalent to the agile manifesto (Leffingwell, 2007, pp. 66-67). The DSDM defines nine core principles (www.dsdm.org):
1) Active user involvement is a must;
2) Design groups are empowered to make system development decisions;
3) Frequent and regular delivery of components is a priority;
4) The primary acceptance criterion for a system or component is its fitness for business purposes—the design driver is business benefit;
5) The business solution is the goal, and iterative and incremental development is necessary to converge on that solution;
6) All changes made during development are reversible;
7) Initial requirements are defined very generally;
8) Testing is not a specific project phase; it occurs constantly;
9) It’s essential to have collaboration and cooperation between all project participants.
DSDM is based on the assumption that requirements cannot be fixed and may be inaccurate (Leffingwell, 2007, p. 67). It approaches project management differently than the traditional approach where requirements are fixed and then cost and schedule are estimated based on the requirements. As with most Agile approaches, in DSDM, cost and schedule are fixed and the requirements are variable (Leffingwell, 2007, p. 67).
Software Engineering Institute (SEI) Observations on Use of Agile Team and Scaling Methods in DoD
SEI has now observed dozens of implementations of various Agile methods and hybrid approaches within government, often DoD settings. We have seen every contract type from time and materials to Firm Fixed Price. (And the contract type itself doesn’t seem to matter to success as much as how the CDRL list and the Technical Review criteria are laid out.) We have observed a program that has succeeded with Agile methods for over 10 years, with voluntary adoption of its software in over 670 AF squadrons (Patriot Excalibur), and we have seen spectacular failures in programs trying to use Agile methods (understandably, those are not as willing to be named!). In our second major publication on Agile methods in DoD, we provided the following table as a help for program offices to understand the cultural differences (often the ones most difficult to adjust) between traditional DoD acquisitions and successful Agile acquisitions (Lapham et al, 2011, p. 18)
<note to Matt: I couldn’t get Word to allow me to insert the table from the paper; I’ve included it as a separate file>
As you might guess, it’s easier to embody the Agile cultural elements in smaller settings. Often we will see “covert Agile” being practiced until sufficient success has been achieved to introduce the new approach to the larger program. We have also observed some larger settings (notably NGA, the National Geospatial Agency) that are adopting Agile methods at an enterprise level. Where we have seen those cases succeed, strong senior leader sponsorship has been a differentiator.
There are a variety of “myths” about Agile development in DoD that we have significant anecdotal evidence to refute, among them “Agile is a fad”, “Agile only works with co-located teams”, “Agile can’t work in DoD settings”, etc. (Miller and Lapham, 2014). All major defense contractors support one or more Agile methodologies at this point (some commercially derived, like SAFE, others custom methods home grown by the contractor). That of itself is evidence that some form of Agile development will be seen within DoD acquisition for the foreseeable future.

Other related development philosophies applied or applicable to software development
Lean Development
	Lean Development (LD) has its roots in Lean Manufacturing found in the auto industry (Cohen et al., 2003, p. 18). It is a “management approach for streamlining the process of providing value to the customer” (Sliger & Broderick, 2008, p. 298). LD defines twelve principles:
1) Satisfying the customer is the highest priority;
2) Always provide the best value for the money;
3) Success depends on active customer participation;
4) Every LD project is a team effort;
5) Everything is changeable;
6) Domain, not point, solutions;
7) Complete, do not construct;
8) An 80 percent solution today instead of 100 percent solution tomorrow;
9) Minimalism is essential;
10) Needs determine technology;
11) Product growth is feature growth, not size growth;
12) Never push LD beyond its limits.
The principles of lean development are compatible, for the most part, with the principles of Agile development, and it is becoming common to see incorporation of lean ideas into Agile development approaches. One approach in particular, SAFE, explicitly uses lean principles and concepts at the enterprise level of its framework to govern the overall flow of requirements to design and implementation teams. (www.scaledagileframework.com)
Kanban
	Although Kanban is usually considered one of the methods for lean, it is treated separately here because it has, even outside of its lean roots, been applied to the management of software programs. Kanban is Japanese which translates to “Signboard,” and was developed by Toyota as "a tool for managing the flow and production of materials” (Gross & McInnis, 2003, p. 1; Liker, 2003, p. 35). It provides operators with visual indicators (Figure 7) as to how much they run and when to changeover as well as allows management to view the schedule status at a glance (Gross & McInnis, 2003, pp. 2-3). David Anderson, who actively translated the Kanban concepts into tools for software development management, identified 5 core principles observed in each successful implementation of Kanban (Anderson, 2010, p. 15):
1) Visualize workflow;
2) Limit Work-in-Progress (WIP);
3) Measure and manage flow;
4) Make process policies explicit;
5) Use models’ to recognize improvement opportunities.
Though Kanban has its roots in manufacturing, its visual indicators and lean principles are being utilized in agile software development (Ikonen, Kettunen, Oza, & Abrahamsson, 2010; Ikonen, Pirinen, Fagerholm, Kettunen, & Abrahamsson, 2011); however, it is not itself a software development lifecycle methodology or project management tool; rather it can be used to help understand and improve the underlying process (Anderson, 2010, p. 16).
[image: http://www.agileproductdesign.com/blog/2009/images/kanban_board.jpg]
[bookmark: _Ref340318694][bookmark: _Toc341284180][bookmark: _Ref338949379]Figure 7 Kanban Board (Patton, 2009)
Software Engineering Institute Observations on Choosing Different Life Cycle/SW Methods Approaches

1. Selecting a software development approach has many dimensions (see Characterizing Projects section above). The SEI has been observing and consulting with government (frequently, though not always, DoD) software acquisition program offices for over a decade. Here are a few observations that students may find useful when making their choice, or living with someone else’s choice, of software development method.Requirements change. Period. Any method that makes it exceedingly difficult to change requirements will just increase the cost of the program and reduce the ability of the contractor to delivery functionality that has value to the operational user. Finding the right level of abstraction for the technical baseline (the basis for what can change without upper level approval and what cannot) is a critical aspect of acquisition management, regardless of software development method. Agile methods are already geared toward acceptance of requirements change as a foundational reality, so are particularly relevant to consider when the rate of requirements change is expected to be high.
2. Incentives matter, and they are difficult to get right. Every life cycle/method has an implicit set of incentives. For waterfall, the incentives are usually focused around process compliance and intermediate work product, usually documentation, completion. For spiral, the incentives are usually around visibly reducing risk with each spiral. For Agile, the incentives are usually around frequently providing working software to the field (or to the systems integration function, in the case of software within a larger hardware program context). If the inherent incentives of the development method and the explicit incentives of the contract are mismatched, success of any kind is difficult to achieve and likely to take longer than planned.
OSD encourages “thoughtful tailoring”, but acquisition professionals are encouraged to take the “safe path”. Much of the rhetoric coming from OSD with the release of interim DoD 5000.02 includes the concept of “thoughtful tailoring”. This is consistent with the need to match project characteristics with different methods’ attributes. However, in practice it is easier (and perceived as safer) for acquisition staff to use “what’s worked before”. The definition of “what’s worked” is often not “resulted in a successful outcome” but rather “didn’t get me (or the person who did it) in trouble”. That perspective leads to what some call “predictable failure” – we will fail in ways that we can predict and that have been accepted in the past by senior officials. (Whether they will continue to be accepted is another question, as the newer rhetoric seems to imply the desire for more rationale than “we did it that way before.)

	List of References

	[bookmark: _ENREF_1]Alliance, E. I. (1998). Earned Value Management System (pp. 28).
[bookmark: _ENREF_2]Anderson, D. J. (2010). Kanban: Blue Hole Press.
[bookmark: _ENREF_3]Boehm, B. (2000). Spiral Development:Experience, Principles,and Refinements. In C. Mellon (Ed.), COTS-Based Systems: Software Engineering Institute.
[bookmark: _ENREF_4]Budget, O. o. S. T. P. O. a. t. O. o. M. a. (2014). Innovative Contracting Case Studies. 91. http://www.whitehouse.gov/sites/default/files/microsites/ostp/innovative_contracting_case_studies_2014_-_august.pdf
[bookmark: _ENREF_5]Center, D. o. t. A. F. S. T. S. (2003). Guidelines for Successful Acquisition and Management of Software-Intensive Systems: Weapon Systems Command and Control Systems Management Information Systems (D. o. t. A. Force, Trans.) Condensed GSAM Handbook (pp. 209). Hill AFB, Utah 84056.
[bookmark: _ENREF_6]Cohen, D., Lindvall, M., & Costa, P. (2003). A State of the Art Report: Agile Software Development (pp. 71): The University of Maryland.
DSDM. www.DSDM.org -- Description of DSDM Agile Project Framework.
[bookmark: _ENREF_7]Gross, J. M., & McInnis, K. R. (2003). Kanban Made Simple: Demystifying and Applying Toyota's Legendary Manufacturing Process: Amacom.
[bookmark: _ENREF_8]Ikonen, M., Kettunen, P., Oza, N., & Abrahamsson, P. (2010, 1-3 Sept. 2010). Exploring the Sources of Waste in Kanban Software Development Projects. Paper presented at the Software Engineering and Advanced Applications (SEAA), 2010 36th EUROMICRO Conference on.
[bookmark: _ENREF_9]Ikonen, M., Pirinen, E., Fagerholm, F., Kettunen, P., & Abrahamsson, P. (2011, 27-29 April 2011). On the Impact of Kanban on Software Project Work: An Empirical Case Study Investigation. Paper presented at the Engineering of Complex Computer Systems (ICECCS), 2011 16th IEEE International Conference on.
[bookmark: _ENREF_10]Krebs, J. (2008). Agile Portfolio Management: Microsoft Press.
[bookmark: _ENREF_11]Lapham, M.A. et al. (2010). Considerations for Using Agile in DoD Acquisition, SEI 2010-TN-02, Carnegie Mellon University.
Lapham, M.A. et al. (2011). Agile Methods : Selected DoD Management and Acquisition Concerns, SEI 2011-TN-02, Carnegie Mellon University.
Leffingwell, D. (2007). Scaling Software Agility: Best Practices for Large Enterprises: Addison-Wesley.
[bookmark: _ENREF_12]Liker, J. (2003). The Toyota Way: McGraw-Hill.
[bookmark: _ENREF_13]Lotz, M. (2013). Waterfall vs. Agile: Which is the Right Development Methodology for Your Project? Retrieved 09/10/2014, 2014, from http://www.seguetech.com/blog/2013/07/05/waterfall-vs-agile-right-development-methodology
[bookmark: _ENREF_14]Manifesto for Agile Software Development. (2012). Retrieved 10/2012, 2012, from http://agilemanifesto.org/
[bookmark: _ENREF_15]Miller, S.M. and Lapham, M.A. (2014) "Agile Mythbusting", tutorial presented at Ground Systems Architecture Workshop 2014
Moe, N. B., Dingsoyr, T., & Dyba, T. (2008, 26-28 March 2008). Understanding Self-Organizing Teams in Agile Software Development. Paper presented at the Software Engineering, 2008. ASWEC 2008. 19th Australian Conference on.
[bookmark: _ENREF_16]One, V. (2007). 2nd Annual Survey - "The State of Agile Development" (pp. 9).
[bookmark: _ENREF_17]Patton, J. (2009). Kanban Development Oversimplified. How Kanban-style development gives us another way to deliver on Agile values. Retrieved 10/25/2012, 2012, from http://www.agileproductdesign.com/blog/2009/kanban_over_simplified.html
[bookmark: _ENREF_18]Palmquist, M.S. et al. (2013) Parallel Worlds: Agile and Waterfall Differences and Similarities, SEI-2013-TN-021
Royce, W. (1970). Managing the Development of Large Software Systems. Paper presented at the IEEE WESCON.
[bookmark: _ENREF_19]Schwaber, K., & Beedle, M. (2002). Agile software development with scrum: Prentice Hall.
[bookmark: _ENREF_20]The SCRUM Process | SCRUM Framework. (2012). Retrieved 10/21/2012, 2012, from http://www.expertprogrammanagement.com/2010/08/the-scrum-process/
[bookmark: _ENREF_21]Sliger, M., & Broderick, S. (2008). The Software Project Manager's Bridge to Agility: Addison-Wesley.
[bookmark: _ENREF_22]Sommerville, I. (2004). Software Engineering (7th ed.): Addison Wesley.
[bookmark: _ENREF_23]Wolak, C. M. (2001). Extreme Programming (XP) Uncovered. Information Systems. Nova Southeastern University. Retrieved from http://www.scisstudyguides.addr.com/papers/cwdiss725paper4.pdf

image4.jpeg

image1.png

image2.png

image3.jpeg

