
	Competency Paper

	Owner: Joe Cooke
Writer/Reviewer: Joe Cooke (DAU) and Suzanne Miller (SEI)
	Date: 7 July 2015

	Competency 24: Software Quality Assurance (SQA)

	

	Competency Element:

	24.1 Applies Software Quality Assurance (SQA) standards and practices to ensure the use of effective software quality programs in IT acquisitions.

	Element Issues (DAU): List ambiguities, misunderstandings, etc. to help IT FIPT next time they update competencies

	· None

	Acquisition Workforce IT Qualification Standard Product and Tasks related to Product (DAU)

	23-1 Develop and deploy an approved Software Quality Assurance Plan (SQAP).

1. Identify and document any applicable policies and/or standards that apply to software quality assurance.
2. Identify and select applicable Software Quality Assurance methods and practices for the subject acquisition
3. Identify quality and process attributes for measurement and/or evaluation that align with software quality assurance methods and select applicable measurements or evaluation approaches.
4. Create a Software Quality Assurance Plan (SQAP) that adequately measures and/or evaluates software process and work products in relation to relevant process and product attributes.
5. Develop and submit for approval a Software Quality Assurance Plan (SQAP)
23-2 Dispose the Software Quality Assurance Plan (SQAP) IAW the program requirements.

1. Review SQAP and compare to applicable policies and/or standards that apply to software quality assurance for this IT acquisition.
2. Review SQAP and identify areas that do not comply with existing DOD policies and standards, and provide feedback for contractor or organic development organization application.
3. Review SQAP quality assurance methods and identify quality assurance methods used to assure quality in DoD software products, recommending compliance methods for contractor application.
4. Review quality attributes and identify quality attributes for measurement that align with quality assurance methods, recommending compliance measurements for contractor application.
5. Recommend updates/corrective actions and verify their closure as needed.
6. Execute the Software Quality Assurance Plan.

	AWQI References (DAU)

	· ISO/IEC 12207-2008
· IEEE 730-2014

	Assumptions (DAU)

	· In some settings, SQA is considered to be equivalent to test and evaluation. This is NOT the viewpoint of this competency. This paper assumes SQA means “life cycle” SQA. Our viewpoint on software quality assurance is that it is a set of activities that occur throughout the entire life cycle that provide objective evidence to technical and management leadership that the program is evolving in a way that makes it likely the program will meet its software quality objectives. In other words, SQA is performed as an objective observer function for software development processes and outcomes (work products and events), providing confidence to management that the development is proceeding within the boundaries of its scope and plan, making headway toward the program’s established software quality goals. This is in opposition to the way some others may consider SQA. Others consider SQA (especially in the commercial space) to primarily involving testing activities for the software end product. Testing will be referred to here as a way to provide evidence of the state of software end products. SQA engineers use the activities and results of testing to support their observations of progress. However, testing will be covered in-depth by Competency Paper #22 (Software Testing & Evaluation).

	TLO (Job Product or Service)
	BLOOM/COURSE

	TLO 24.1.1 Given a Department of Defense (DoD) Information Technology (IT) software acquisition scenario, evaluate a Software Quality Assurance (SQA) program to ensure the acquisition will reach both its established quality goals and stay within the boundaries of its scope and plan.
	BLOOM: 5
ISA320

	ELO(s) with Major Takeaway (MT) (tasks which are required to build the product or service) (DAU)

	ELO 24.1.1.1 Define the purpose of Software Quality Assurance (SQA)

MT1.1.1. SW Quality Assurance SQA is performed as an objective observer function for software development processes and outcomes (work products and events), providing confidence to management that the development is within the boundaries of its scope and plan, making headway toward the acquisition’s software quality goals. (MT includes more detailed overview of purpose of SQA)

Assessment Strategy: QUIZ

	BLOOM: 1
ISA101

	ELO 24.1.1.2 Identify the components (activities and events) of an effective Software Quality Assurance (SQA) program

MT1.2.1. SW Quality Assurance has an established set of activities and events that are best practices and should be present in an effective quality program. (See MT for list of activities and events)

Assessment Strategy: Quiz

	BLOOM: 1
ISA101

	ELO 24.1.1.3 Identify examples of common defects injected into a software development during the various phases of lifecycle development

MT 1.3.1. Defects do not just exist in written code. Defects are injected at all phases of lifecycle development to include activities associated within user requirements, specifications, architectures, design, and code. (See MT for examples of defects by lifecycle phase)

Assessment Strategy: Quiz

	BLOOM:2
ISA101

	ELO 24.1.1.4 Given a list of quality factors and their descriptions, match the term with its description

MT1.4.1. Software Quality factors are attributes of the software that improve the efficient use (capabilities provided) and impact the life-cycle costs of the software. (See MT for a list of quality factors and descriptions)

Assessment Strategy: Quiz

	BLOOM: 1
ISA101

	ELO 24.1.1.5 Given several common measures (e.g. Defect Density) used to track product and process quality in software development efforts, correctly interpret their meaning

MT 1.5.1. Although many consider defect density (the # of defects of a particular type found per unit of size – usually Equivalent Source Lines of Code for software code) as a primary measure of software quality, there are also others that provide insight to the quality of the software being developed. (See MT for a list of quality-focused measures and potential interpretations)

Assessment Strategy: Quiz

	BLOOM: 2
ISA101

	ELO 24.1.1.6 Identify characteristics of generic DoD software system domains (e.g. Platform IT, Command and Control, and Defense Business Systems), that might influence how each system is reviewed in a software quality program

MT1.6.1. Software quality assurance practices should be chosen to meet not just the program’s quality objectives. They should also be chosen with reference to the risks inherent in the type of system being built. Known primary risks include safety for PIT systems, security for C4ISR systems and privacy for DBS. (See MT for a more detailed discussion)

Assessment Strategy: Facilitated Discussion

	BLOOM: 2
ISA201

	ELO 24.1.1.7 Given several process-focused and product-focused software quality assurance methods, describe how each assures quality in a software acquisition

MT 1.7.1. In DoD systems, software quality assurance methods primarily involve process observation and analysis, work product review, quality attribute analysis, process and product trends analysis, analysis of developer reports like static code analysis reports, and analysis of collected measures. An explicit test and evaluation function is used to measure targeted quality built in to the system. (See MT for a discussion of the process and product focused SQA methods)

Assessment Strategy: Facilitated Discussion

	BLOOM: 2
ISA201

	ELO 24.1.1.8 Given a software acquisition scenario, recognize the preferred method for identifying and tracking defects

MT1.8.1. Software defect may seem like an easily definable term, but there are ways of defining it that change how it is interpreted. (See MT for guidelines in identifying and tracking defects.)

Assessment Strategy: Facilitated Discussion

	
BLOOM: 2
ISA201

	ELO 24.1.1.9 Given a DoD IT acquisition scenario and a proposed quality attribute, analyze the potential effectiveness of the attribute in measuring the desired software quality objectives

MT1.9.1. Two important guidelines for selecting a quality attribute for measurement in an IT project are (1) the contribution of the quality attribute to overall software product quality is understood, and (2) the data that is needed to determine the degree of satisfaction of the quality attribute can reasonably be collected. (See MT for further discussion)

ASSESSMENT: Case

	BLOOM: 3
ISA201

	ELO 24.1.1.10 Given acquisition scenarios with several software-reliant program issues, analyze how each issue may affect achieving the program's software quality objectives

MT1.10.1. Given the overarching concept of software quality as the software functioning only as intended within its intended environment, it is clear that many, but not all, issues that arise within a program could impact software quality. (See MT for examples of program issues and how those issues affect achieving a program’s software quality objective)

Assessment Strategy: Facilitated Discussion

	BLOOM: 4
ISA201

	ELO 24.1.1.11 Given a software-reliant system acquisition scenario and a software quality assurance approach, evaluate how the plan meets software system quality objectives and recommend improvements as necessary

MT1.11.1. The Program Manager is ultimately responsible for establishment of software quality program definition that includes Key Performance Parameters (KPP’s), Key System Attributes (KSA’s) and software quality attribute targets (sometimes called non-functional requirements). Particular focus of software quality for systems with human end users is warfighter-friendly performance within the parameters of a particular capability. (See MT for more discussion)

MT1.11.2 Software quality factors are not all complementary. SQA Plan should include how conflicts among the quality attributes will be resolved and what measures or evaluations will be used to analyze achievement of the agreed satisfaction levels. (See MT for examples of conflicts among quality attributes and how they can be resolved)

Assessment Strategy: CASE

	BLOOM: 5
ISA320

	ELO 24.1.1.12 Given a software-reliant system acquisition scenario, evaluate a software defect management program’s ability to predict software quality

MT1.12.1. There are many factors that go into collecting and appropriately analyzing defects throughout an acquisition program. (See MT for expectations of the government and acquirer team in managing a software defect management effort)

MT 1.12.2 A Defect Management Scheme is important for categorizing and prioritizing defects. It should be in alignment with the quality targets of the acquisition. (See MT for a sample defect management scheme and considerations for proper defect management)

Assessment strategy: Case

	BLOOM: 5
ISA320

	MAJOR TAKEAWAYS (MT) with REFERENCES and CONTENT

	MT1.1.1. SW Quality Assurance SQA is performed as an objective observer function for software development processes and outcomes (work products and events), providing confidence to management that the development is within the boundaries of its scope and plan, making headway toward the acquisition’s software quality goals.

Reference: CMMI Level 2 (Repeatable Process)
The purpose of Software Quality Assurance is to provide management with appropriate visibility into the process being used by the software project and of the products being built.
Software Quality Assurance involves reviewing and auditing the software products and activities to verify that they comply with the applicable procedures and standards and providing the software project and other appropriate managers with the results of these reviews and audits.
The software quality assurance group works with the software project during its early stages to establish plans, standards, and procedures that will add value to the software project and satisfy the constraints of the project and the organization's policies. By participating in establishing the plans, standards, and procedures, the software quality assurance group helps ensure they fit the project's needs and verifies that they will be usable for performing reviews and audits throughout the software life cycle. The software quality assurance group reviews project activities and audits software work products throughout the life cycle and provides management with visibility as to whether the software project is adhering to its established plans, standards, and procedures.
Compliance issues are first addressed within the software project and resolved there if possible. For issues not resolvable within the software project, the software quality assurance group escalates the issue to an appropriate level of management for resolution.
This key process area covers the practices for the group performing the software quality assurance function. The practices identifying the specific activities and work products that the software quality assurance group reviews and/or audits are generally contained in the Verifying Implementation common feature of the other key process areas.
Reference: ISO/IEC/IEEE FDIS 15288:2014(E), Systems and Software Engineering -- System Life Cycle Processes, Section 6.3.8.1 Purpose. The purpose of the Quality Assurance process is to help ensure the effective application of the organization’s Quality Management process to the project. Quality Assurance focuses on providing confidence that quality requirements will be fulfilled. Proactive analysis of the project life cycle processes and outputs is performed to assure that the product being produced will be of the desired quality and that organization and project policies and procedures are followed.

	MT1.2.1. SW Quality Assurance has an established set of activities and events that are best practices and should be present in an effective quality program.

Software Quality Assurance Activities and Events (See attached SW Quality Activities Teaching Note)
SQA is the process of evaluating the quality of a product and enforcing adherence to software product standards and procedures. It is an umbrella activity that ensures conformance to standards and procedures throughout the SDLC of a software product. There are a large number of tasks involved in SQA activities.
1. Formulating a quality management plan
1. Applying software engineering techniques
1. Conducting formal technical reviews
1. Applying a multi-tiered testing strategy
1. Enforcing process adherence
1. Controlling change
1. Measuring impact of change
1. Performing SQA audits
1. Keeping records and reporting
See teaching note in this folder for a description of each of these activities/events

References:
(1) CMMI-DEV v1.3, Process and Product Quality Assurance Process Area
(2) CMMI-ACQ v1.3, Process and Product Quality Assurance Process Area

	MT 1.3.1. Defects do not just exist in written code. Defects are injected at all phases of lifecycle development to include activities associated within user requirements, specifications, architectures, design, and code.

	Software Development Phase
	Percent of Defects Introduced

	Requirements
	20 percent

	Design
	25 percent

	Coding
	35 percent

	User Manuals
	12 percent

	Bad Fixes
	8 percent

A. Requirements and Specifications– The IEEE Std. 1028-1997 categorized anomaly classes as: missing, extra (superfluous), ambiguous, inconsistent, improvement desirable, not conforming to standards, risk-prone, factually incorrect, not-implementable (for example because of system constraints or time constraints), and editorial
Walia et al. developed a taxonomy of requirements’ errors in the requirements phase. They identified and collected fourteen types of errors (sources of defects) from literature survey of software engineering, psychology and human cognitive fields. Then, they categorized errors into three high-level classes of requirements’ errors: people errors, process errors, and documentation errors, as follows

[image: http://ars.els-cdn.com/content/image/1-s2.0-S1110016814000568-gr1.jpg]

B. Architecture and Design –
C. Software Architectural Error – Difference exist between actual and expected software architecture
D. Software Architectural Failure – Inability of a software architecture to meet a function or nonfunctional requirement
E. Software Architectural Defect – Incorrect, incomplete or inconsistent architectural specification, behavior or design

Structural Defects -
Syntactic defects
Directional defects on connections, flows
Missing or unintended connections or flows
Data type mismatches
Unused components
Not matching the architectural pattern used
Too much/too little modularity
Failure to meet nonfunctional requirements (ex. Modifiability)
Behavioral Defects
Receive unexpected event
Expected event not sent
Missing activity
Extraneous activity
Concurrency issues
Execution on incorrect states
Pre/Post conditions violations
Failure to meet nonfunctional requirements (ex: performance)

Debugging Approaches
Model checking, Simulation, software architecture slicing, back tracing, localizing defects

	
F. Coding - Software is written by humans – and every piece of software therefore has bugs, or “undocumented features” as a salesman might call them. That is, the software does something that it shouldn’t, or doesn’t do something that it should. These bugs can be due to bad design, misunderstanding of a problem, or just simple human error – just like a typo in a book. However, whereas a book is read by a human who can usually infer the meaning of a misspelled word, software is read by computers, which are comparatively stupid, and will do only what they’re told.

Empirical studies provided evidence that up to 75% of code review defects affect software evolvability rather than functionality

Examples –
A. Format string exploits, race conditions, memory leaks, buffer overflows.

References:
(1) Practical SW Measurement: Objective Information for Decision Makers, Appendix A (Functional Correctness—Defects) http://www.psmsc.com/PSMBook.asp
(2) ISO/IEC 15939 Software Engineering—Software Measurement Process international standards
(3) G.S. Walia, J.C. Carver, A systematic literature review to identify and classify software requirement errors. Inform. Softw. Technol., 51 (2009), pp. 1087–1109
(4) Mantyla, M.V.; Lassenius, C (May–June 2009). "What Types of Defects Are Really Discovered in Code Reviews?" (PDF). IEEE Transactions on Software Engineering. Retrieved 2012-03-21.

	MT1.4.1. Software Quality factors are attributes of the software that improve the efficient use (capabilities provided) and impact the life-cycle costs of the software. (See MT for a list of quality factors and descriptions)

Two approaches to defining quality attributes : ISO9126 and the Kano Model

ISO9126
ISO 9126 is an international standard for the evaluation of software. The standard is divided into four parts which addresses, respectively, the following subjects: quality model; external metrics; internal metrics; and quality in use metrics. ISO 9126 Part one, referred to as ISO 9126-1 is an extension of previous work done by McCall (1977), Boehm (1978), FURPS and others in defining a set of software quality characteristics.

ISO9126-1 represents the latest (and ongoing) research into characterizing software for the purposes of software quality control, software quality assurance and software process improvement (SPI). This article defines the characteristics identified by ISO 9126-1. The other parts of ISO 9126, concerning metrics or measurements for these characteristics, are essential for SQC, SQA and SPI but the main concern of this article is the definition of the basic ISO 9126 Quality Model.

The ISO 9126-1 software quality model identifies 6 main quality characteristics, namely:
· Functionality
· Reliability
· Usability
· Efficiency
· Maintainability
· Portability
These characteristics are broken down into sub-characteristics, a high level table is shown below. It is at the subcharacteristic level that measurement for SPI will occur. The main characteristics of the ISO9126-1 quality model, can be defined as follows:
	Characteristics
	Subchar
	Definitions

	
	Suitability
	This is the essential Functionality characteristic and refers to the appropriateness (to specification) of the functions of the software.

	
	Accurateness
	This refers to the correctness of the functions, an ATM may provide a cash dispensing function but is the amount correct?

	Functionality
	Interoperability
	A given software component or system does not typically function in isolation. This subcharacteristic concerns the ability of a software component to interact with other components or systems.

	
	Compliance
	Where appropriate certain industry (or government) laws and guidelines need to be complied with, i.e. SOX. This subcharacteristic addresses the compliant capability of software.

	
	Security
	This subcharacteristic relates to unauthorized access to the software functions.

	

	
	Maturity
	This subcharacteristic concerns frequency of failure of the software.

	Reliability
	Fault tolerance
	The ability of software to withstand (and recover) from component, or environmental, failure.

	
	Recoverability
	Ability to bring back a failed system to full operation, including data and network connections.

	

	
	Understandability
	Determines the ease of which the systems functions can be understood, relates to user mental models in Human Computer Interaction methods.

	
Usability
	Learnability
	Learning effort for different users, i.e. novice, expert, casual etc.

	
	Operability
	Ability of the software to be easily operated by a given user in a given environment.

	

	
Efficiency
	Time behavior
	Characterizes response times for a given thru put, i.e. transaction rate.

	
	Resource behavior
	Characterizes resources used, i.e. memory, cpu, disk and network usage.

	

	
	Analyzability
	Characterizes the ability to identify the root cause of a failure within the software.

	Maintainability
	Changeability
	Characterizes the amount of effort to change a system.

	
	Stability
	Characterizes the sensitivity to change of a given system that is the negative impact that may be caused by system changes.

	
	Testability
	Characterizes the effort needed to verify (test) a system change.

	

	
	Adaptability
	Characterizes the ability of the system to change to new specifications or operating environments.

	Portability
	Installability
	Characterizes the effort required to install the software.

	
	Conformance
	Similar to compliance for functionality, but this characteristic relates to portability. One example would be Open SQL conformance which relates to portability of database used.

	
	Replaceability
	Characterizes the plug and play aspect of software components, that is how easy is it to exchange a given software component within a specified environment.

Kano Model

The Kano model has been used since the 1980s to emphasize that quality is a multi-dimensional concept. Defects are a “negative” quality aspect that need to be minimized. Minimizing defects alone is insufficient to achieve customer satisfaction.

1. Basic or Threshold Attributes.
· Customers assume that these attributes will be present.
· If they are not present, or are of low quality, customers will be dissatisfied.
· If they are present, customers' satisfaction will not increase.
· Example: the valve stem on a car's wheel.
2. Performance / Linear Attributes.
1. The customer's satisfaction is directly related to the attribute.
2. Higher quality means more satisfaction; lower quality means less satisfaction.
3. Example: Gas mileage for a car. The farther the car goes, the happier the customer.
3. Exciters or Delighters.
· Customers don't expect these attributes, but they increase satisfaction.
· If they are missing, customers are not more dissatisfied.
· If they are present, customers are more satisfied.
· Example: CD changer in an economy car.

References:
(1) Kano Model (Dave Verduyn’s Website), http://www.kanomodel.com/about-the-kano-model/;
(2) Kano Model (QualityGurus Website), http://www.qualitygurus.net/Kano+Model
(3) ISO 9236
James Moore's 1998 text, "Software Engineering Standards: A User s Road Map". Read it, especially Chapter 6!
“Quality Assurance” and “Quality Factors” entries at pages 941-969 in the Encyclopedia of Software Engineering, John Marciniak, editor.
“Software Quality Metrics for Object-Oriented Environments”, Linda H. Rosenberg and Lawrence E. Hyatt, CROSSTALK, April 1997 located at http://www.stsc.hill.af.mil/crosstalk/1997/apr/quality.asp.
Software Quality Professional, ASQ quarterly journal, information available at http://www.asq.org/pub/sqp/.
“The War on Bugs”, special CROSSTALK SQA issue, November 1998, at http://www.stsc.hill.af.mil/CrossTalk/1998/nov/nov98ind.asp.
American Society for Quality (ASQ) FAQs on Quality Standards are located at http://standardsgroup.asq.org/about/about.htm.
Software Measurement: Special Issue, CROSSTALK, February 2001, located at http://www.stsc.hill.af.mil/crosstalk/2001/feb/feb01cov.asp.
“Aim For Quality”, special CROSSTALK Software Quality issue, April 1999.
American Society for Quality (ASQ) Software Quality Division located at http://www.asq-software.org/.
“Assessing the Quality of Large, Software-Intensive Systems: A Case Study”, Alan Brown, et. al., SEI technical report located at http://www.sei.cmu.edu/publications/articles/large-sw-int-systems.html.
“Bad Software” Internet site is devoted to issues associated with poor software quality and its legal implications located at http://www.badsoftware.com/.
“Cyclomatic Complexity”, Software Engineering Institute (SEI) Tech Review at http://www.sei.cmu.edu/str/descriptions/cyclomatic.html.
Fatal Defect: Chasing Killer Computer Bugs, Ivars Peterson, Vintage, 1996.
IEEE Guide for Software Quality Assurance Planning, IEEE 730.1-1995.
“The Impact of Software Project Management on Quality”, R. Burdick, et al, Cutter IT Journal, September 1998, pages 30-38.
Measuring Software Design Quality, David Card, Prentice Hall, 1990.
“Measuring Software Quality: A NSA Case Study”, Thomas Drake, Computer, Volume 29, Number 11, November 1996, pages 77-87.
NASA Internet site on formal methods is at http://shemesh.larc.nasa.gov/fm/.
“Quality Assurance” and “Quality Factors” entries at pages 941-969 in the Encyclopedia of Software Engineering, John Marciniak, editor.
Handbook of Software Quality, 2nd Edition, G. Gordon Schulmeyer and James I. McManus, Van Nostrand Reinhold: New York, NY, 1992.
Society for Software Quality (SSQ) located at http://www.ssq.org/.
“Software Inspections”, Software Engineering Institute (SEI) Tech Review at http://www.sei.cmu.edu/activities/str/descriptions/inspections_body.html.
Software Quality Assurance: A Practical Approach, Tsun Chow, editor, IEEE Press.
Software Quality Assurance: Documentation and Reviews, NIST Publication NISTIR 4909, 1992, at http://hissa.ncsl.nist.gov/index-pubs.html.
Software Quality Attributes, SEI Technical Report CMU/SEI-95-TR-021 at http://www.sei.cmu.edu/topics/publications/documents/95.reports/95.tr.021.html.
Software Quality Measurement: A Framework for Counting Problems and Defects, SEI Technical Report CMU/SEI-92-TR-22, September 1992, available online at http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr22.92.pdf

	MT 1.5.1. Although many consider defect density (the # of defects of a particular type found per unit of size – usually Equivalent Source Lines of Code for software code) as a primary measure of software quality, there are also others that provide insight to the quality of the software being developed.

A. Product Quality Metrics
1) Mean time to failure Intrinsic product quality is usually measured by the number of “bugs” (functional defects) in the software or by how long the software can run before encountering a “crash.” In operational definitions, the two metrics are defect density (rate) and mean time to failure (MTTF). The MTTF metric is most often used with safety-critical systems such as the airline traffic control systems, avionics, and weapons. For instance, the U.S. government mandates that its air traffic control system cannot be unavailable for more than three seconds per year. In civilian airliners, the probability of certain catastrophic failures must be no worse than 10−9 per hour (Littlewood and Strigini, 1992). The defect density metric, in contrast, is used in many commercial software systems.
2) Defect density Although seemingly straightforward, comparing the defect rates of software products involves many issues. The general concept of defect rate is the number of defects over the opportunities for error (OFE) during a specific time frame. Because failures are defects materialized, we can use the number of unique causes of observed failures to approximate the number of defects in the software. The denominator is the size of the software, usually expressed in thousand lines of code (KLOC) or in the number of function points. In terms of time frames, various operational definitions are used for the life of product (LOP), ranging from one year to many years after the software product’s release to the general market. Usually more than 95% of the defects are found within four years of the software’s release. For application software, most defects are normally found within two years of its release.
3) Customer problems Good practice in software quality engineering, however, also needs to consider the customer’s perspective. Assume that we are to set the defect rate goal for release-to-release improvement of one product. From the customer’s point of view, the defect rate is not as relevant as the total number of defects that might affect their business. Therefore, a good defect rate target should lead to a release-to-release reduction in the total number of defects, regardless of size. If a new release is larger than its predecessors, it means the defect rate goal for the new and changed code has to be significantly better than that of the previous release in order to reduce the total number of defects.
4) Customer satisfaction Customer satisfaction is often measured by customer survey data via the five-point scale: Very Satisfied, Satisfied, Neutral, Dissatisfied, Very Dissatisfied. Satisfaction with the overall quality of the product and its specific dimensions is usu-ally obtained through various methods of customer surveys.
B. In-Process Quality Metrics
1) Defect Density During Machine Testing Defect rate during formal machine testing (testing after code is integrated into the system library) is usually positively correlated with the defect rate in the field. Higher defect rates found during testing is an indicator that the software has experienced higher error injection during its development process, unless the higher testing defect rate is due to an extraordinary testing effort—for example, additional testing or a new testing approach that was deemed more effective in detecting defects.
2) Defect Arrival Pattern During Machine Testing Overall defect density during testing is a summary indicator. The pattern of defect arrivals (or for that matter, times between failures) gives more information. Even with the same overall defect rate during testing, different patterns of defect arrivals indicate different quality levels in the field.
3) Phase-Based Defect Removal Pattern The phase-based defect removal pattern is an extension of the test defect density metric. In addition to testing, it requires the tracking of defects at all phases of the development cycle, including the design reviews, code inspections, and formal verifications before testing. Because a large percentage of programming defects is related to design problems, conducting formal reviews or functional verifications to enhance the defect removal capability of the process at the front end reduces error injection. The pattern of phase-based defect removal reflects the overall defect removal ability of the development process.
4) Defect Removal Effectiveness Defect removal effectiveness (or efficiency) can be defined as follows: Defects removed during a development phase/ Defects latent in the product. Because the total number of latent defects in the product at any given phase is not known, the denominator of the metric can only be approximated (Defects removed during the phase + defects found later. The metric can be calculated for the entire development process, for the front end (before code integration), and for each phase.
5) Metrics for Software Maintenance When development of a software product is complete and it is released to the market, it enters the maintenance phase of its life cycle. During this phase the defect arrivals by time interval and customer problem calls (which may or may not be defects) by time interval are the de facto metrics. However, the number of defect or problem arrivals is largely determined by the development process before the maintenance phase. Not much can be done to alter the quality of the product during this phase. Therefore, these two de facto metrics, although important, do not reflect the quality of software maintenance. What can be done during the maintenance phase is to fix the defects as soon as possible and with excellent fix quality. Such actions, although still not able to improve the defect rate of the product, can improve customer satis-faction to a large extent. The following metrics are therefore very important:
A. Fix backlog and backlog management index
B. Fix response time and fix responsiveness
C. Percent delinquent fixes
D. Fix Quality

Reference: SW Quality Metrics Overview

	MT1.6.1. Software quality assurance practices should be chosen to meet not just the program’s quality objectives. They should also be chosen with reference to the risks inherent in the type of system being built.

A. PIT systems – Safety, Response time
B. C4ISR systems – Security, interoperability
C. DBS systems – Privacy, interoperability

Reference:

	MT 1.7.1. In DoD systems, software quality assurance methods primarily involve process observation and analysis, work product review, quality attribute analysis, process and product trends analysis, analysis of developer reports like static code analysis reports, and analysis of collected measures. An explicit test and evaluation function is used to measure targeted quality built in to the system.

A. Process Assurance - “…systematic activities providing evidence of the ability of the software process to produce a software product fit for use.”
· Unbiased feedback on process compliance (process audits)
· Early warning of risks
· Independent oversight
· SQA audit and reporting
· “Are we following established standards and procedures”
· Independent examination of records for process compliance
· Assessment and statistical process control analysis
· Causal Analysis and Defect Prevention

B. Product Assurance - “…the product performs as specified.”
· Embedded SQA processes to “build in” product quality
· Desk checking
· Walk-throughs
· Formal Inspections
· Joint Reviews
· Computer-based testing
· Identification and elimination of defects early in the lifecycle
· Independent test functions
· Product audits
· “Does the software product conform to set standards and is the project status accurate”
· Independent examination
· Manual or Automated depending on software lifecycle

Reference: STSC Software Quality Assurance Report, Computer Resources Support Improvement Program (CRSIP), April 6, 2000

	MT1.8.1. Software defect may seem like an easily definable term, but there are ways of defining it that change how it is interpreted.

Defect Density Measure = Defects(Failures)/Size of Software. Measures Product quality. Although seemingly straightforward, comparing the defect rates of software products involves many issues. To define a rate, we first have to operationalize the numerator and the denominator, and specify the time frame. The general concept of defect rate is the number of defects over the opportunities for error (OFE) during a specific time frame. Failures are defects materialized, we can use the number of unique causes of observed failures to approximate the number of defects in the software. The denominator is the size of the software, usually expressed in thousand lines of code (KLOC) or in the number of function points. Measuring size is quite variable. In terms of time frames, various operational definitions are used for the life of product (LOP), ranging from one year to many years after the software product’s release to the general market. Usually more than 95% of the defects are found within four years of the software’s release. For application software, most defects are normally found within two years of its release.

Defect rate from Customer point of view. Good practice in software quality engineering, however, also needs to consider the customer’s perspective. Assume that we are to set the defect rate goal for release-to-release improvement of one product. From the customer’s point of view, the defect rate is not as relevant as the total number of defects that might affect their business. Therefore, a good defect rate target should lead to a release-to-release reduction in the total number of defects, regardless of size. If a new release is larger than its predecessors, it means the defect rate goal for the new and changed code has to be significantly better than that of the previous release in order to reduce the total number of defects.

Customer Problem Metrics. Another product quality metric used by major developers in the software industry measures the problems customers encounter when using the product. For the defect rate metric, the numerator is the number of valid defects. However, from the cus-tomers’ standpoint, all problems they encounter while using the software product, not just the valid defects, are problems with the software. Problems that are not valid defects may be usability problems, unclear documentation or information, duplicates of valid defects (defects that were reported by other customers and fixes were available but the current customers did not know of them), or even user errors. These so-called non-defect-oriented problems, together with the defect problems, constitute the total problem space of the software from the customers’ perspective.

Reference: Metrics and Models in Software Quality Engineering, 2nd, Addison-Wesley Longman Publishin Co., Boston, MA, Chapter 4- Software Quality Metrics

	MT1.9.1. Two important guidelines for selecting a quality attribute for measurement in an IT project are (1) the contribution of the quality attribute to overall software product quality is understood, and (2) the data that is needed to determine the degree of satisfaction of the quality attribute can reasonably be collected.

A. Conduct risk analysis of user requirements and identify quality critical quality attributes
B. Insert user quality requirements into specifications
C. Plan for meeting user’s implicit quality requirements (can’t articulate till later)
D. Use Standards
· Standards for programming languages (prevents idiosyncrasy)
· In process development standards (repeatability and improvement)
· Software standards metrics (consensus wisdom) (IEEE Std 1061-1992)
· Software safety standards (cross-specialization) (IEEE Std 1228-1994, IEC61508, IEE603)
· Software engineering standards (process control) (ISO/IEC 15288, IEEE Std 1233-1996)
· Quality assurance standards (Customer focus) (ISO 9000-3)
· Dependability standards (IEC 300-1(1993), Fault Tree Analysis: IEC1025(1990), SW Reliability:AIAA R-013-1992)
· V&V standards (professional discipline)
· CMMI (Badging)
· Project Management Standards (IEE Std 1058.1-1987)
· Resources Standards (cross application terms) (IEE 610, IEEE P1320.1,AIAA G-010-1993, ISO/IEC 14102:1995)
· Product Standards (ISO/IEC 14598)
· Process Standards (ISO 12207, ISO/IEC 15026, IEEE Std 1219-1992, IEE Std 1045-1992)
E. Levels of Standards
· Terminology
· Guidance
· Principles and objectives
· Element standards
1. Application guides
2. Tools and techniques

Reference: Humphrey, W. S. (2002). A Discipline for Software Engineering. Reading, MA: Addison-Wesley.

	MT1.10.1. Given the overarching concept of software quality as the software functioning only as intended within its intended environment, it is clear that many, but not all, issues that arise within a program could impact software quality.

A. (See MT for examples of program issues and how those issues affect achieving a program’s software quality objective)

	MT1.11.1. The Program Manager is ultimately responsible for establishment of software quality program definition that includes Key Performance Parameters (KPP’s), Key System Attributes (KSA’s) and software quality attribute targets (sometimes called non-functional requirements). Particular focus of software quality for systems with human end users is warfighter-friendly performance within the parameters of a particular capability.

The SQA function within the program office is a key source of candidate software quality goals and facilitation for reaching decisions about the goals that will be established for the program.

Reference: Schulmeyer, G. Handbook of SW Quality Assurance, 4th edition, Chapters 1, 3.

	MT1.11.2 Software quality factors are not all complementary. SQA Plan should include how conflicts among the quality attributes will be resolved and what measures or evaluations will be used to analyze achievement of the agreed satisfaction levels.

Examples:
A. In the New Jersey Department of Motor Vehicles licensing system, engineers chose a 4th generation language to satisfy software affordability and timeliness objectives, but the system failed because of performance-scalability problems.
B. The initial development of the National Library of Medicine MEDLARS II system had a plethora of layers and recursions for portability and evolvability, but was eventually scrapped due to performance problems
C. The initial design of the ARPANet Interface Message Processor software – which was fortunately revised – focused on performance at the expense of evolvability through the design of an extremely tight inner loop.

There is a risk when prioritizing the quality attributes in the requirement process or later in the prioritization process that, the most current quality attributes will be prioritized. This can lead to prioritizing quality attributes that are conflicting with quality attributes that are equally important, but are visible later in the process, such as maintainability. For example, take the relation stated in (McCall, 1994) regarding maintainability vs. efficiency (negative), and maintainability vs. reliability (negative). If both efficiency and reliability are prioritized early in the process, it is reasonable to believe that the maintainability for the product will suffer, and also that these limitations will only be detected later in the lifecycle of the system.

Another example of conflicting quality attributes and their consequences are the relation between Time To Market (TTM) and correctness, which is negative. The basic consequence is that when Time To Market for the project is shortened, and pressure is applied, the number of faults introduced is increased in combination with less testing effort.

Problematic relations found within industry:
 Time to Market vs. Correctness
 Reliability vs. Maintainability
 Usability vs. Efficiency
 Correctness vs. Efficiency
 Portability vs. Maintainability

There is also a risk for chain reactions. Assume that a system is constructed with high demands on portability and correctness. This will lead to low levels of maintainability and efficiency. In later stages of the lifecycle, higher efficiency is needed due to increased use of the system. It would be easier to adapt the system to this need if the system was easily maintained, which given the relations are not likely to be the case. This would probably lead to an expensive and problematic maintenance phase. Figures up to 60-80% of the total lifecycle cost may be spent on maintenance. An assumption is that if these relations and consequences are known and showed, it would influence prioritization, and it would be possible take an informed decision also reduce effort and cost and improve quality within industry.

Reference: K. Henningsson and C. Wohlin, "Understanding the Relations between Software Quality Attributes - A Survey Approach", Proceedings 12th International Conference for Software Quality, Ottawa, Canada, Proceedings on CD, October 2002.

	MT1.12.1. There are many factors that go into collecting and appropriately analyzing defects throughout an acquisition program.

Understanding how defects are defined and categorized, understanding the mechanisms that are used to collect defect measurements, having visualizations that show trends over time as well as the current situation, having context information that is relevant to defect analysis – all of these are factors that need to be considered when analyzing the potential effectiveness of a software defect management program.

Reference: Schulmeyer, G. Zero Defect Software, Chapters 3, 4, 14

	MT 1.12.2 A Defect Management Scheme is important for categorizing and prioritizing defects. It should be in alignment with the quality targets of the acquisition.

To be effective, a prioritization scheme should take at least the following factors into its index: criticality (how badly does leaving the defect in affect the software’s viability or performance); urgency (how soon is the software that contains the defect needed for operation or testing); frequency of use (how often is the part of the software the defect is found in accessed by the system); and difficulty to fix (especially in terms of the potential for creating unintended consequences or additional defects when fixing the one that was found). Not all developers use all these factors (or they may add in others not as common, especially if there are security or safety issues in the system). The SQA engineer should be able to analyze proposed prioritizations and ensure that all four perspectives (at minimum) are represented in the prioritization decisions.

Reference: Cohen, J. et al. White Paper: A Defect Prioritization Method Based on the Risk Priority Number, SEI, 2014.
http://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_70276.pdf

	
List of References

	
Bass, L., Clements, P., and Kazman R. Software Architecture in Practice (3rd Edition), Upper Saddle River, NJ: Addison-Wesley, 2013.
http://www.worldcat.org/title/software-architecture-in-practice/oclc/784576095&referer=brief_results
CMMI for Development, Version 1.3 (CMMI-DEV v1.3), CMMI Institute, 2010. (The paper is dated 2010. The PDF version distributed by the CMMI Institute and third-party printers were generated in 2011 from the 2010 paper.)
http://cmmiinstitute.com/resources/cmmi-development-version-13
[bookmark: _GoBack]CMMI for Acquisition, Version 1.3 (CMMI-ACQ v1.3), CMMI Institute, 2010. (The paper is dated 2010. The PDF version distributed by the CMMI Institute and third-party printers were generated in 2011 from the 2010 paper.)
http://cmmiinstitute.com/resources/cmmi-acquisition-version-13
Cohen, J. et al. White Paper: A Defect Prioritization Method Based on the Risk Priority Number, SEI, 2014.
http://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_70276.pdf
Deutsch, Michael S, and Ronald R. Willis. Software Quality Engineering: A Total Technical and Management Approach. Englewood Cliffs, NJ: Prentice Hall, 1988.
 http://www.worldcat.org/title/software-quality-engineering-a-total-technical-and-management-approach/oclc/16682479&referer=brief_results
Evans, M. and Marciniak, J. Software Quality Assurance & Management, 1987.
http://www.worldcat.org/title/software-quality-assurance-and-management/oclc/693420997&referer=brief_results
IEEE 730-2014. Standard for Software Quality Assurance Processes, 2014.
http://standards.ieee.org/findstds/standard/730-2014.html
ISO/IEC 12207:2008, Standard for Systems and Software Engineering - Software Life Cycle Processes
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4475826&searchWithin%3Dp_Publication_Title%3A12207
ISO/IEC/IEEE FDIS 15288:2014(E), Systems and Software Engineering - System Life Cycle Processes, Final Draft International Standard, November 2014. When final, will supersede ISO/IEC 15288:2008.
ISO/IEC 15939-2008 Systems and Software Engineering Measurement Process, 2008.
http://standards.ieee.org/findstds/standard/15939-2008.html
Kano Model (Dave Verduyn’s Website), http://www.kanomodel.com/about-the-kano-model/
Kano Model (QualityGurus Website), http://www.qualitygurus.net/Kano+Model
Nielsen, Paul D, Written Statement Submitted to the HASC Panel on Acquisition Reform, July 9, 2009.*
http://democrats.armedservices.house.gov/index.cfm/files/serve?File_id=a7a6c258-de85-430c-97f1-a016893b68c7
 * The HASC’s hearing included three witnesses: Mr Tim Harp, then-DASD(C3ISR & IT) in OASD(NII); Dr Ron Kerber, then Co-Chair, Defense Science Board Task Force on DoD Policies and Procedures for IT Acquisition; and Dr Nielsen of SEI. The full testimony transcript including Q&A between HASC members and witnesses is at the following link.
 http://www.gpo.gov/fdsys/pkg/CHRG-111hhrg51959/html/CHRG-111hhrg51959.htm
McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J., & Hall, F. Practical software measurement: objective information for decision makers. Boston: Addison-Wesley, 2002.
http://www.psmsc.com/PSMBook.asp
Schulmeyer, Gordon. Handbook of Software Quality Assurance, 4th edition, Artech House Publishers, 2007. (there are several and he updates occasionally, so find the latest one)
http://www.artechhouse.com/Main/Books/Handbook-of-Software-Quality-Assurance-Fourth-Edit-1294.aspx
Schulmeyer, G. Gordon. 1990. Zero defect software. New York: McGraw-Hill, 1990.
http://www.worldcat.org/title/zero-defect-software/oclc/645350201?referer=di&ht=edition
James Moore's 1998 text, "Software Engineering Standards: A User s Road Map". Read it, especially Chapter 6!
“Quality Assurance” and “Quality Factors” entries at pages 941-969 in the Encyclopedia of Software Engineering, John Marciniak, editor.
“Software Quality Metrics for Object-Oriented Environments”, Linda H. Rosenberg and Lawrence E. Hyatt, CROSSTALK, April 1997 located at http://www.stsc.hill.af.mil/crosstalk/1997/apr/quality.asp.
Software Quality Professional, ASQ quarterly journal, information available at http://www.asq.org/pub/sqp/.
“The War on Bugs”, special CROSSTALK SQA issue, November 1998, at http://www.stsc.hill.af.mil/CrossTalk/1998/nov/nov98ind.asp.
American Society for Quality (ASQ) FAQs on Quality Standards are located at http://standardsgroup.asq.org/about/about.htm.
Software Measurement: Special Issue, CROSSTALK, February 2001, located at http://www.stsc.hill.af.mil/crosstalk/2001/feb/feb01cov.asp.
“Aim For Quality”, special CROSSTALK Software Quality issue, April 1999.
American Society for Quality (ASQ) Software Quality Division located at http://www.asq-software.org/.
“Assessing the Quality of Large, Software-Intensive Systems: A Case Study”, Alan Brown, et. al., SEI technical report located at http://www.sei.cmu.edu/publications/articles/large-sw-int-systems.html.
“Bad Software” Internet site is devoted to issues associated with poor software quality and its legal implications located at http://www.badsoftware.com/.
“Cyclomatic Complexity”, Software Engineering Institute (SEI) Tech Review at http://www.sei.cmu.edu/str/descriptions/cyclomatic.html.
Fatal Defect: Chasing Killer Computer Bugs, Ivars Peterson, Vintage, 1996.
IEEE Guide for Software Quality Assurance Planning, IEEE 730.1-1995.
“The Impact of Software Project Management on Quality”, R. Burdick, et al, Cutter IT Journal, September 1998, pages 30-38.
Measuring Software Design Quality, David Card, Prentice Hall, 1990.
“Measuring Software Quality: A NSA Case Study”, Thomas Drake, Computer, Volume 29, Number 11, November 1996, pages 77-87.
NASA Internet site on formal methods is at http://shemesh.larc.nasa.gov/fm/.
“Quality Assurance” and “Quality Factors” entries at pages 941-969 in the Encyclopedia of Software Engineering, John Marciniak, editor.
Handbook of Software Quality, 2nd Edition, G. Gordon Schulmeyer and James I. McManus, Van Nostrand Reinhold: New York, NY, 1992.
Society for Software Quality (SSQ) located at http://www.ssq.org/.
“Software Inspections”, Software Engineering Institute (SEI) Tech Review at http://www.sei.cmu.edu/activities/str/descriptions/inspections_body.html.
Software Quality Assurance: A Practical Approach, Tsun Chow, editor, IEEE Press.
Software Quality Assurance: Documentation and Reviews, NIST Publication NISTIR 4909, 1992, at http://hissa.ncsl.nist.gov/index-pubs.html.
Software Quality Attributes, SEI Technical Report CMU/SEI-95-TR-021 at http://www.sei.cmu.edu/topics/publications/documents/95.reports/95.tr.021.html.
Software Quality Measurement: A Framework for Counting Problems and Defects, SEI Technical Report CMU/SEI-92-TR-22, September 1992, available online at http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr22.92.pdf.

image1.jpeg

