[bookmark: _GoBack]
	Detailed Competency Paper

	Owner: Joseph Cooke (DAU)

Writer/Reviewer: Don Firesmith (SEI)
	Date: 08/19/2014
Date: 10/8/2014

	Competency 18: Software/Systems Lifecycle Management

	

	Competency Element:

	· Applies and assesses methods, principles, and tools for planning and managing the software acquisition and development lifecycle to establish reasonable and practical expectations for the government.

· RECOMMENDED NEW: Understand and assess the principles, methods, techniques, and tools for selecting, evaluating, and managing a system/software lifecycle to effectively and efficiently deliver software-based capabilities to the users.

	Acquisition Workforce IT Qualification Standard Product

	· A program-specific software acquisition lifecycle plan
· RECOMMENDED CHANGE: A program-specific software lifecycle plan

	Acquisition Workforce IT Qualification Standard Tasks

	1. Identify end-user IT life cycle requirements.
2. Define logical increments or releases for software capability in the software lifecycle plan. Recommend changing "increments or releases" to "increments and releases"
3. Identify facets of modular, open-systems architecture in the software acquisition lifecycle plan.
4. Develop early, successive prototyping best practices in the software acquisition lifecycle plan.
5. Develop Data Item Deliverables to allow for evaluation of contractor software capability. Recommend Deleting: --this doesn't seem to fit
6. Integrate increments, architecture and prototype events into a program-specific software acquisition life-cycle plan.
Recommended addition 7: Integrate system and software development/life cycles.

	Assumptions

	

	TLO/ELO

	TLO#1: Identify Software system life cycle methods, principles and tools.
	BLOOM: 2
IRM 101

	ELO#1: Identify common system software development life cycle approaches including their pros and cons.
Takeaways
1. Understanding of common software systems life cycle approaches.
2. Understanding of the pros and cons of using a system software life cycle approach in a qiven situation.
	BLOOM: 2
IRM 101

	ELO#2: Describe how the software development/life cycle fits into an overall system development/life cycle including potential conflicts to avoid.

Takeaways: Understanding of the tensions between hardware cycles and software cycles and how this affects the frequency of releases to the program office and the end users.
	BLOOM: 2
IRM 101

	ELO#3: Identify the role of modeling and simulation in the system/software lifecycle.

Takeaways- Since modeling and simulation is encouraged in the lifecycle of DOD systems we should address where it can be used. Applications of Modeling and simulation in developing software systems.
	BLOOM: 2
IRM 101

	ELO#4: Describe the benefits and drawbacks of using modeling & simulation in the system/software life cycle.
Takeaways- Effect on cost schedule and performance when using modeling and simulation in the system/software lifecycle.
	BLOOM: 2
IRM 101

	ELO#5: Describe factors unique to the lifecycle of a software enabled system.
 Takeaways- When adding software to a system, other factors must be considered to include: Software Dev. Plan, Post Deployment Software Support, Data protection, SW Assurance, SW Data Management & Technical Data rights, Software Reuse, SW Acquisition Costs, SW Sustainment Costs, Government & Industry Teaming, SW Safety, and SW Security.
	BLOOM: 2
IRM 101

	TLO#2: Apply IT Software System life cycle methods, principles and tools.
	BLOOM: 3
IRM 202

	ELO#1: Given a software acquisition scenario, recommend lifecycle methods, principles and tools unique to software systems and incorporate them in to the appropriate life cycle planning documents.
Takeaways- This include, but not limited to the following: Software Development Plan (SDP), Post-Deployment Software Support (PDSS),Data Protection and Software Assurance, Software Data Management and Technical Data Rights, Software Reuse, Software Acquisition and Sustainment Costs, and Software Safety
	BLOOM: 3
IRM 202

	ELO#2: Provided two Software System Life Cycle scenarios, compare and contrast the advantages and disadvantages of the approaches used with regard to the effective and efficient delivery of new capability.
 Takeaways - Know how the various lifecycle approaches compare to each other. How the development cycles address milestones, releases, developer-internal increments, etc.
	BLOOM: 4
IRM 202

	TLO#3: Assess IT acquisition and development life cycle considerations.
	BLOOM: 5
SAM 301

	ELO#1: Given two different software system lifecycle scenarios for delivering a certain capability, evaluate the effect on the systems cost, schedule and performance
Takeaways- Different development cycles/approaches (e.g., Agile) impact the types and the places in the cycle when various work products are developed, delivered, and maintained.
	BLOOM: 3
SAM301

	ELO#2: Given a proposed software system lifecycle approach, recommend changes which might improve the effectiveness and efficiency of a system over its lifecycle.
Takeaways- Considerations: Software Dev. Plan, Post Deployment Software Support, Data protection, SW Assurance, SW Data Management & Technical Data rights, Software Reuse, SW Acquisition Costs, SW Sustainment Costs, Government & Industry Teaming, SW Safety, and SW Security.
	BLOOM: 5
SAM 301

	Competency Issues: List any ambiguities, misunderstandings, etc. to help IT FIPT next time they update competencies

	Recommend changing Competency Element to:
RECOMMENDED NEW: Understand and assess the principles, methods, techniques, and tools for selecting, evaluating, and managing a system/software lifecycle to effectively and efficiently deliver software-based capabilities to the users.

	

	COMPETENCY CURRICULUM CONTENT (What the students need to know)

Releases
Major releases vs. developer-internal increments
	
Management Reviews
Formal reviews vs. informal IPRs, milestones vs. inch pebbles
The role of the PMO and developer in defining the lifecycle and it's products

Increments
The impact of using Agile approaches with many small increments (e.g., sprints), and deliverables (including incremental delivery of deliverables.

Software System Lifecycles
1. The pros and cons of different cycles and under what conditions they should be used.
2. The difference between development cycles and lifecycles and the difference between system-level cycles and software-level cycles and how they relate.

Software Development Life Cycle (SDLC) approaches
Eventual mastery of Software Development Life Cycle (SDLC) approaches available for use in DOD. Understand the principles underlying a particular approach. (Waterfall, V, Evolutionary Prototype, RAD, Agile, Incremental, Iterative, and others)
	1. Accurately describe and provide examples of various SDLC approaches
	2. Compare and Contrast SDLC approaches.
	3. Analyze and recommend an efficient and effective SDLC approach that best delivers software for a given system acquisition.
	4. Evaluate a proposed SDLC approach for its ability to effectively and efficiently deliver software for the given system acquisition.

Software-specific considerations in the System Development Life Cycle.
When adding software to a system, other factors must be considered to include: Software Dev. Plan, Post Deployment Software Support, Data protection, SW Assurance, SW Data Management & Technical Data rights, Software Reuse, SW Acquisition Costs, SW Sustainment Costs, Government & Industry Teaming, SW Safety, and SW Security.
1. Identify the software-specific factors involved when developing a system with software components.
2. Describe the considerations that must be made when addressing each of these factors
3. Appraise the cost, schedule and performance impact these factors have for a given acquisition.
4. Propose guidance for addressing these factors into an acquisition strategy, acquisition plan and request for proposal.

	

	APPLICABLE REFERENCES FOR COMPETENCY

	

Summary of Primary References:

Interim DoDI 5000.02, 26 Nov 2013
https://acc.dau.mil/dodi5000.02

DEFENSE ACQUISITION GUIDEBOOK, CHAPTER 4, Section 4.1.3.1 - Software
https://acc.dau.mil/CommunityBrowser.aspx?id=638301

IEEE Std. 12207-2008 (a.k.a. ISO/IEC 12207:2008) Standard for Systems and Software Engineering—Software Life Cycle Processes

SWEBOK Version 3.0
http://www.computer.org/portal/web/swebok/swebokv3

Summary of Other References:
NIST Special Publication (SP) 800-64, Revision 2, Security Considerations in the System Development Life Cycle
http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-64-Revision2.pdf

IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for Systems and Software Engineering—System Life Cycle Processes

SEBOK - Systems Engineering Body of Knowledge
http://www.sebokwiki.org/wiki/Main_Page

Guidebook for Acquisition of Naval Software Intensive Systems
Guidebook for Acquisition of Naval Software-Intensive Systems.

The Weapon Systems Software Management Guidebook (USAF)
https://acc.dau.mil/adl/en-US/280695/file/43090/AF%20SW%20Guidebook%20UNLIMITED.pdf

The Department of the Army provides software metrics
DA-PAM-70-3, Army Acquisition Procedures, DA-PAM-73-1,Test and Evaluation in Support of Systems Acquisition

EXCERPTS

DEFENSE ACQUISITION GUIDEBOOK, CHAPTER 4, Section 4.1.3.1 - Software
https://acc.dau.mil/CommunityBrowser.aspx?id=638301

Establish the software acquisition strategy as early as possible to address function and component allocation to software and determine what is to be developed, what is provided as Government off-the-shelf (GOTS) software, commercial-off-the-shelf (COTS) software, or open source software (OSS), and what is a mix or hybrid. The strategy also incorporates plans for associated data and intellectual property rights for GOTS, COTS, and OSS.

Software-intensive acquisitions typically involve modeling and simulation (M&S) in engineering support roles specific to each phase of acquisition. Example uses of M&S in software acquisition are to:
• Study development cost by function,
• Study feasibility of the prospective system in the intended operational environment,
• Conduct engineering trade-offs and analyses of alternatives,
• Study and refine viability of planned software and computers to meet KPPs,
• Simulate undeveloped equipment during software testing, and
• Emulate the interoperability environment of the system during integration.
M&S activities are most valuable earlier in program planning as decision support tools and may be used iteratively to assess evolving functional architectures. The cost of M&S is allocated during initial program planning. Cost basis is the rationale supporting the balance between M&S cost and degree of needed risk reduction. M&S used by a Program Manager to make decisions should be verified and validated to the intended use in a time frame before assessment is needed. Data used by M&S to support assessments should have a known pedigree and should be adequate to the level of assessment. See DAG section 4.3.19.1. Modeling and Simulation for more information.

An incremental software development approach enables the developers to deliver capability in a series of manageable releases or builds to gain user acceptance and feedback for the next increment and reduce the overall level of risk. Frequent requirements and design-validation activities involving the end users and developers can assist the program to define viable increments of capabilities that have operational value for early fielding before the whole system capability is delivered. This incremental approach may not be viable when the end system is not usable until the entire set of essential capabilities is integrated and tested. For example, weapon systems are dependent upon software for real-time controls that can affect life and safety. As such, these weapon systems are required to be qualified and certified for security, safety, and interoperability before being released for operational use. In addition, safety and security assurance certifications and approvals require a predetermined objective level of rigor in verification, validation, and accreditation (VV&A) of these software releases. This VV&A is based on risk, not on the complexity, number of software lines of code (SLOC), or size of each software release. The Joint Software Systems Safety Handbook provides guidance for implementing safety-critical software designs with the reasonable assurance that the software executes within the system context and is at an acceptable level of safety risk.

Iterative development approaches should be planned well in advance and should consider impacts to other system elements of the functional architecture or other interconnecting systems. The program should focus on the allocation of functional architecture elements to the physical architecture and identifying the interdependencies and associated technical risks as part of determining the content for each iteration or build. Incremental or iterative development should be employed to carefully define the final end state of the supporting physical hardware elements when functionality or capability is to be added over time. Memory, processor overhead, and input/output capacity should be designed to support growth in capability. Implementing an open systems architecture (OSA) as part of the software design and development increases design flexibility, supports incremental deliveries, allows for opportunities to use COTS and OSS, facilitates future upgrades and modifications, and supports technology insertion (see DAG sections 4.3.18.4. Commercial-Off-the-Shelf and 4.3.18.15. Open Systems Architecture).

Software considerations occur and vary throughout the acquisition life cycle, with specific activities associated with each acquisition phase described in Table 4.1.3.1.T1.

	Phase
	Software Considerations

	Materiel Solution Analysis
	Some system requirements map directly to software requirements, while others can be implemented in hardware or firmware, providing opportunities for trade-offs and studies that optimize design and reduce vulnerabilities and risks. The ability to analyze and model options, and articulate the pros and cons of each, can have long-range impacts on the delivered system, suitability for intended use, and ultimate life-cycle cost.

	Technology Development
	Competitive prototyping of software-intensive systems helps to identify and mitigate technical risks. System prototypes may be physical or math models and simulations that emulate expected performance. High-risk concepts may require scaled models to reduce uncertainty too difficult to resolve purely by mathematical emulation. On occasion, competitive full-scale prototypes are needed to resolve cost/benefit alternatives between competing software-intensive system designs. Software programs typically conduct a Software Specification Review (SSR) to assess the software requirements and interface specifications for computer software configuration items, in support of the Preliminary Design Review (PDR). The software trouble reporting system is in operation and may be used to track any remediation in design and software code and unit testing.

	Engineering and Manufacturing Development
	To demonstrate that the detailed software design is complete at Critical Design Review (CDR), software documentation should represent the design, performance, and test requirements, along with the development and software/systems integration facilities to be employed in coding and integrating the deliverable software. Software and systems used for computer software configuration item development such as simulations and emulations, should be validated, verified, and ready to begin coding upon completion of the CDR, starting the implementation and synthesis of the software products. Software trouble reporting is used extensively to track problems and problem criticality levels. Problem report metadata should be selected so that the reports are relevant in development, test, and in operation to tracking and assessments. Typically, software functions vary in mission criticality so that problems reported in those functions are more critical to the system. There is legacy problem report tracking information that can be used to generally profile and predict which types of software functions may accrue what levels of problem reports. Program progress decisions can be made based on assessments of patterns of problem reports among software components of the system.

	Production and Deployment
	Software may be refined as needed in response to operational test and evaluation activities and in support of the Full-Rate Production and/or Full Deployment Decision and Initial Operational Capability.

	Operations and
Support
	The In-Service Review (ISR) assesses user acceptance and potential upgrades on delivered software systems. A block change or follow-on incremental development may be defined that delivers maintenance, safety, or urgent builds and upgrades to the field in a controlled manner. Procedures for updating and maintaining software on fielded systems can require operators to download new builds or to install them from physical media, and may require more training. Procedures should be in place to support effective configuration management and control. There are inherent risks involved in modifying software on fielded systems upon which warfighters depend while engaged in frontline activities. Another aspect of the hardware-software interaction is that maliciously altered devices or inserted software can infect the supply chain, creating unexpected changes to systems. Vigilance is needed as part of supply chain risk management (see DAG Chapter 5 Life-Cycle Logistics and Chapter 13 Program Protection). Upon completion of development, the problem report tracking system can be used with other factors as legacy information to inform system and component upgrades. During Operations and Support phase, software problem reporting is continued.

Factors for Managing Software-Intensive Systems
Programs consider several factors when managing software-intensive systems, including the following:
Software Development Plan (SDP): The SDP as a best practice provides details below the level of the Systems Engineering Plan (SEP) and the contractor’s Systems Engineering Management Plan (SEMP) for managing software development and integration. The SDP Data Item Description (DID) DI-IPSC-81427A is a tailorable template and a useful starting point in defining a software development plan. The SDP provides the Systems Engineer with insight into, and a tool for monitoring, the processes being followed by the developer for each activity, the project schedules, the developer’s software organization, and resource allocations.
Post-Deployment Software Support (PDSS): The management of the software development process and the implementation of a process that ensures software supportability are among two of the most difficult challenges facing the Program Manager in management of software-intensive systems. The Program Manager should effectively address the issues of software supportability, the software test environment, and other equipment, material, and documentation, including data rights that are required to provide PDSS for those end users identified in the SDP or in other documents similar to the Computer Resources Life Cycle Management Plan. (For more information on PDSS see MIL-HDBK-347.) Successful PDSS planning should assist the Program Manager in controlling software life-cycle costs.
Data Protection and Software Assurance: These factors are defined as the level of confidence that software functions as intended and is free of vulnerabilities, either intentionally or unintentionally designed or inserted as part of the software code, throughout the acquisition life cycle. The Program Manager is responsible for protecting system data and software, whether the data are stored and managed by the program office or by the developer (see DAG Chapter 13 Program Protection).
Software Data Management and Technical Data Rights: Rights associated with commercial products can be highly restrictive and are defined in licenses that may restrict the number of copies made and ability to alter the product. Often there is no assurance of suitability for intended purposes and no recourse to the vendor. Open source, sometimes referred to as “freeware,” may not be free and may also have restrictions or carry embedded modules that are more restrictive than the overall package. The Program Manager, Systems Engineer, software engineer, and contracting officer should be familiar with the restrictions placed on each software item used in the contract or deliverable to the Government. The Program Office should determine the necessary intellectual property rights to computer software and should ensure that the intellectual property right should be determined in advance of the RFP and contract award and that they are acquired as needed, including:
· All requirements tools and data sets;
· All test software and supporting information necessary to build and execute the tests;
· All other software test tools such as interface simulators and test data analyzers whether custom-developed or not; and
· All information for defects remaining in the software upon delivery to the Government.
Software Reuse: The reuse of any system, hardware, firmware, or software should be addressed in multiple plans and processes throughout the acquisition life cycle, including the SEP, SDP, firmware development plan, configuration management plan, test plans (Test and Evaluation Master Plan, Software Test Plan, Independent Verification and Validation Plan), and quality assurance plans (system and software). (Note: Software reuse has traditionally been overestimated in the beginning of programs, and software reuse has often proven to be more costly than new software development. Software reuse plans should be monitored as a potential risk.) For more discussion of the reuse of software, see DAG section 4.3.18.15. Open Systems Architecture.
Software Acquisition and Sustainment Costs: Related costs should be accurately estimated in advance and then tracked to monitor execution within program cost constraints using relevant metrics (size, complexity, productivity factors, quality, development organization’s past performance/productivity, etc.).
Government and Industry Teaming: Teaming is needed in order for the Government to successfully acquire software-reliant systems with industry as a partner. As a result of the teaming agreement, the Government may be able to use the experience and expertise of its industry partner. Extensive teaming with industry makes it incumbent on the Government to ensure that it maintains current and applicable software engineering expertise.
Software Safety: Software safety is applicable to most DoD systems as a factor of the ubiquitous nature of software-driven functions, network connectivity, and systems of systems (SoS). Specific mandatory certifications such as “air worthiness certification” require attention early in the development cycle to ensure adequate documentation and testing are planned and executed to meet certification criteria. Systems Engineers are encouraged to check with certification authorities frequently because rules can change during development.

**

IEEE Std. 12207-2008 (a.k.a. ISO/IEC 12207:2008) Standard for Systems and Software Engineering—Software Life Cycle Processes
Systems and software engineering -- Software life cycle processes, is an international standard that establishes a common framework for software life cycle process, with well-defined terminology. This standard defines a comprehensive set of processes that cover the entire life-cycle of a software system—from the time a concept is made to the retirement of the software. The standard defines a set of processes, which are in turn defined in terms of activities. The activities are broken down into a set of tasks. The processes are defined in three broad categories: Primary Life Cycle Processes, Supporting Life Cycle Processes, and Organizational Life Cycle Processes.
IEEE Std 12207 applies to the acquisition of systems and software products and services, to the supply, development, operation, maintenance, and disposal of software products and the software portion of a system, whether performed internally or externally to an organization. Those aspects of system definition needed to provide the context for software products and services are included. Software includes the software portion of firmware. IEEE Std 12207-2008 is identical to ISO/IEC 12207:2008.
This standard officially replaced MIL-STD-498 for the development of DOD software systems in May 1998.
Primary life cycle processes
· Acquisition process
· Supply process
· Development process
· Operation process
· Maintenance process

Supporting life cycle processes
· Audit process
· Configuration Management
· Joint review process
· Documentation process
· Quality assurance process
· Problem solving process
· Verification process
· Validation process

Organizational processes
· Management process
· Infrastructure process
· Improvement process
· Training process

**

SWEBOK Version 3.0
http://www.computer.org/portal/web/swebok/swebokv3

From Chapter 8, Section 2 describing Software Life Cycles:

2. Software Life Cycles
This topic addresses categories of software processes, software life cycle models, software process adaptation, and practical considerations. A software development life cycle (SDLC) includes the software processes used to specify and transform software requirements into a deliverable software product. A software product life cycle (SPLC) includes a software development life cycle plus additional software processes that provide for deployment, maintenance, support, evolution, retirement, and all other inception-to-retirement processes for a software product, including the software configuration management and software quality assurance processes that are applied throughout a software product life cycle. A software product life cycle may include multiple software development life cycles for evolving and enhancing the software.

Individual software processes have no temporal ordering among them. The temporal relationships among software processes are provided by a software life cycle model: either an SDLC or SPLC. Life cycle models typically emphasize the key software processes within the model and their temporal and logical interdependencies and relationships. Detailed definitions of the software processes in a life cycle model may be provided directly or by reference to other documents.

In addition to conveying the temporal and logical relationships among software processes, the software development life cycle model (or models used within an organization) includes the control mechanisms for applying entry and exit criteria (e.g., project reviews, customer approvals, software testing, quality thresholds, demonstrations, team consensus). The output of one software process often provides the input for others (e.g., software requirements provide input for a software architectural design process and the software construction and software testing processes). Concurrent execution of several software process activities may produce a shared output (e.g., the interface specifications for interfaces among multiple software components developed by different teams). Some software processes may be regarded as less effective unless other software processes are being performed at the same time (e.g., software test planning during software requirements analysis can improve the software requirements).

2.1. Categories of Software Processes
Many distinct software processes have been defined for use in the various parts of the software development and software maintenance life cycles. These processes can be categorized as follows:
1. Primary processes include software processes for development, operation, and maintenance of software.
2. Supporting processes are applied intermittently or continuously throughout a software product life cycle to support primary processes; they include software processes such as configuration management, quality assurance, and verification and validation.
3. Organizational processes provide support for software engineering; they include training, process measurement analysis, infrastructure management, portfolio and reuse management, organizational process improvement, and management of software life cycle models.
4. Cross-project processes, such as reuse, software product line, and domain engineering; they involve more than a single software project in an organization.

Software processes in addition to those listed above include the following:

Project management processes include processes for planning and estimating, resource management, measuring and controlling, leading, managing risk, managing stakeholders, and coordinating the primary, supporting, organizational, and cross-project processes of software development and maintenance projects.

Software processes are also developed for particular needs, such as process activities that address software quality characteristics (see the Software Quality KA). For example, security concerns during software development may necessitate one or more software processes to protect the security of the development environment and reduce the risk of malicious acts. Software processes may also be developed to provide adequate grounds for establishing confidence in the integrity of the software.

2.2. Software Life Cycle Models
The intangible and malleable nature of software permits a wide variety of software development life cycle models, ranging from linear models in which the phases of software development are accomplished sequentially with feedback and iteration as needed followed by integration, testing, and delivery of a single product; to iterative models in which software is developed in increments of increasing functionality on iterative cycles; to agile models that typically involve frequent demonstrations of working software to a customer or user representative who directs development of the software in short iterative cycles that produce small increments of working, deliverable software. Incremental, iterative, and agile models can deliver early subsets of working software into the user environment, if desired.

Linear SDLC models are sometimes referred to as predictive software development life cycle models, while iterative and agile SDLCs are referred to as adaptive software development life cycle models. It should be noted that various maintenance activities during an SPLC can be conducted using different SDLC models, as appropriate to the maintenance activities.

A distinguishing feature of the various software development life cycle models is the way in which software requirements are managed. Linear development models typically develop a complete set of software requirements, to the extent possible, during project initiation and planning. The software requirements are then rigorously controlled. Changes to the software requirements are based on change requests that are processed by a change control board (see Requesting, Evaluating and Approving Software Changes in the Change Control Board in the Software Configuration Management KA). An incremental model produces successive increments of working, deliverable software based on partitioning of the software requirements to be implemented in each of the increments. The software requirements may be rigorously controlled, as in a linear
model, or there may be some flexibility in revising the software requirements as the software product evolves. Agile models may define product scope and high-level features initially; however, agile models are designed to facilitate evolution of the
software requirements during the project.

It must be emphasized that the continuum of SDLCs from linear to agile is not a thin, straight line. Elements of different approaches may be incorporated into a specific model; for example, an incremental software development life cycle model may incorporate sequential software requirements and design phases but permit considerable flexibility in revising the software requirements and architecture during software construction.

**

NIST Special Publication (SP) 800-64, Revision 2, Security Considerations in the System Development Life Cycle
http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-64-Revision2.pdf

 The guide focuses on the information security components of the SDLC. One section summarizes the relationships between the SDLC and other information technology (IT) disciplines. Topics discussed include the steps that are prescribed in the SDLC approach, and the key security roles and responsibilities of staff members who carry out information system development projects.
NIST SP 800-64 helps organizations integrate specific security steps into a linear and sequential SDLC process. The five-phase method of development that is described in the guide is also known as the waterfall method, and is one process for system development. Other methodologies can be used as well. Detailed charts and tables in the guide present specific activities for each step of the SDLC, and the security activities associated with each step.

**
IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for Systems and Software Engineering—System Life Cycle Processes
This International Standard establishes a common process framework for describing the life cycle of man-made systems. It defines a set of processes and associated terminology for the full life cycle, including conception, development, production, utilization, support and retirement. This standard also supports the definition, control, assessment, and improvement of these processes. These processes can be applied concurrently, iteratively, and recursively to a system and its elements throughout the life cycle of a system.

	

