
	Competency Paper

	Owner: Joseph Cooke (DAU)
Writer/Reviewer: Ken Nidiffer (SEI)
	Date: 22 April 2015
Date:

	Competency 18: Software-Reliant System Lifecycle Management

	

	Competency Element: 18.1

	18.1 Applies and assesses principles, methods, techniques, and tools for planning and managing the government’s acquisition lifecycles of software-reliant systems to establish reasonable and practical expectations for the government.

	Element Issues (DAU): List any ambiguities, misunderstandings, etc. to help IT FIPT next time they update competencies

	NONE.

	Acquisition Workforce IT Qualification Standard Product (DAU) (18-1-1)

	18-1-1 A program-specific acquisition lifecycle plan for a software-reliant system
1. Identify end-user lifecycle requirements.
2. Define the major phases and associated milestones in the government’s acquisition lifecycle plan.
3. Define the formal reviews and associated deliverables in the acquisition lifecycle plan.
4. Define the major releases of capabilities to the acquisition office.
5. Evaluate the contractors’ development cycle plans including developer-internal increments.
6. Ensure consistency between the government’s acquisition lifecycle plan and the contractor’s development cycle plans.
7. Ensure consistency between the overall system lifecycle and the software lifecycle.

	AWQI References (DAU)

	None listed.

	Assumptions (DAU)

	None.

	TLO 18.1.1 (Job Product or Service) (DAU)

	18.1.1 TLO: Given a scenario, evaluate an acquisition lifecycle plan for a software-reliant system.
[bookmark: _GoBack]NOTE: There are seven (7) notes at the bottom of this paper that provide more information on this topic.
	BLOOM: 5

	ELO(s) with Major Takeaway (MT) (tasks which are required to build the product or service) (DAU)
	

	ELO 18.1.1.1: Identify acquisition models used to acquire software-reliant systems in the DoD.
· MT1.1. Understand the defining characteristics of development cycles: Incremental development (incrementally adding functionality and capabilities), iterative development (making improvements and fixing defects), concurrent development (non-sequential overlapping activities), and time-boxing (varying from years down to weeks).
· MT1.2. Understand various acquisition models used to acquire software-reliant systems including: Defense Unique Software Intensive Programs, Incrementally Fielded Software Intensive Programs, Hybrid with Hardware Dominant and Hybrid with Software Dominant.
· MT1.3. Understand the typical differences between system, hardware, and software acquisition cycles and why they exist.

Assessment Strategy: Quiz
	BLOOM: 2
Level 1 (ISA101)

	ELO 18.1.1.2: Identify principles, methods, techniques, and tools used to manage the progress of a software-reliant system through its lifecycle.
· MT2.1. Realize that the responsibilities of the government acquisition office and that of the developer are different with regard to acquisition cycles. The government is responsible for defining major releases and their deployments as well as associated milestones and contractor/developer deliveries. The contractor/developer will have an internal set of developer-defined increments to manage their deliverables at a lower level (lowest level of WBS.
· MT2.2. Understand the different reviews used during the acquisition lifecycle including Management Reviews, Milestone Reviews, and Engineering Reviews, both formal and informal.
· MT2.3. Understand the difference between Government-driven major milestone reviews and contractor/developer-driven in-progress reviews (IPRs).
· MT2.4. Recognize that acquirers and developers manage schedules at different levels of detail such as formal milestones vs. informal inch pebbles.

Assessment Strategy: Quiz
	BLOOM: 2
Level 1 (ISA101,
CLE003)

	ELO 18.1.1.3: Identify relevant considerations that influence the acquisition lifecycle of a software-reliant system.
· MT3.1. Understand the Software Development Plan (SDP), the Integrated Master Schedule (IMS), and the Work Breakdown Schedule (WBS) including their content, purpose, and how they relate to the acquisition development cycle.
· MT3.2. Understand the impact of the following factors on the acquisition lifecycle of a software-reliant system: the Completeness and Stability of the Requirements, the Development and Documentation of the Software Architecture, Software Reuse including use of COTS and open source software, Software Data Management and Technical Data Rights, the use of Modular Open Systems, Data Protection and Software Assurance, Software Safety, Software Acquisition and Sustainment Costs, Technical Maturity Levels, and Post-Deployment Software Support (PDSS).
Assessment Strategy: Case
	BLOOM: 2
Level 2 (ISA201)

	ELO 18.1.1.4: Given a proposed software system lifecycle approach, recommend changes which might improve the effectiveness and efficiency of a system over its lifecycle.
· MT4.1. Consider the following factors: the Completeness and Stability of the Requirements, the Development and Documentation of the Software Architecture, Software Reuse including use of COTS and open source software, Software Data Management and Technical Data Rights, the use of Modular Open Systems, Data Protection and Software Assurance, Software Safety, Software Acquisition and Sustainment Costs, Technical Maturity Levels, and Post-Deployment Software Support (PDSS)
Assessment Strategy: Case
	BLOOM: 5
SAM 301

	MAJOR TAKEAWAYS (MT) with REFERENCES and CONTENT (Subject Matter Expert (SME))

	MT1.1. Understand the defining characteristics of development cycles: Incremental development, iterative development, concurrent development, and time-boxing.
REFEERENCES:
· Interim DoDI 5000.02, 26 Nov 2013, pp 9-11,
http://standards.ieee.org/findstds/standard/29148-2011.html
· IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for Systems and Software Engineering—System Life Cycle Processes
· Fairley, Richard. Managing and Leading Software Projects, ISBN: 978-0-470-29455-0, 2009
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013
· [bookmark: standard]ISO/IEC/IEEE 24765-2010 - Systems and software engineering -- Vocabulary
· OSD/SE Web Site: http://www.acq.osd.mil/se/initiatives/init_pp-sse.html

CONTENT:
· Incremental Development: The software-reliant system contains too much software to develop in a purely sequential strict “waterfall” manner. Instead, the software is developed in a series of increments, each of which adds functionality and capabilities. The contractor/developer may develop resulting software increments (often referred to as builds) strictly to help organize and manage the development of the software. However, these increments may also be released to the program office, either for the purposes of independent testing or for fielding (i.e., delivery to the end users and operators).
· Iterative Development: Each increment of software will typically contain architecture, design, or implementation defects or weaknesses that need to be fixed in future increments. The requirements may also change, for example due to changing threats and new technologies. The contractor/developer will iterate the software and its related documentation to fix defects and make improvements.
· Concurrent Development: Also referred to as parallel development, the software is often developed concurrently in multiple ways.
· Software in different subsystems, computer software configuration items (CSCIs), or other components will be simultaneously developed by different teams working in parallel with each other.
· Software in different increments may be developed in an overlapping manner in which a following increment is started before its preceding increment is completed.
· Software requirements, architecture, design, implementation, integration, and testing activities may overlap even within a single team as its members rapidly jump between these activities in a manner sometimes referred to as “design a little, code a little, and test a little.”
· Time-boxed Development: To ensure timely delivery and avoid “analysis paralysis”, each increment is typically time-boxed so that it has specific associated deadlines. These deadlines could occur relatively infrequently at major programmatic milestones or quite frequently at contractor/developer-internally scheduled “inch pebbles”.
· Sequential vs. Evolutionary/Agile Development: Programs tend to fall along a spectrum of development cycles from relatively sequential “waterfall” programs to agile programs, and some programs use a hybrid of the two.
· Waterfall acquisition development cycles tend to have one or at most two to four long-duration increments (typically one or more years), to have minimal iteration due to the baselining of requirements and architecture, to be largely sequential with little in the way of concurrent development, and have large time boxes associated with their small number of long-duration increments.
· Evolutionary acquisition development cycles tend to have many short-duration increments (typically varying from several days or weeks to a few months), to have a great deal of iteration as requirements evolve, to be highly overlapping, and have short-duration time-boxes.

MT1.2. Understand various acquisition models used to acquire software-reliant systems including: Defense Unique Software Intensive Programs, Incrementally Fielded Software Intensive Programs, Hybrid with Hardware Dominant and Hybrid with Software Dominant.
REFERENCES:

· Interim DoDI 5000.02, 26 Nov 2013, paragraph 5.c.(3)
· Defense Acquisition University presentation - Interim DoDI 5000.02 -- The Cliff Notes Version -- A Quick Glance at New Guidance -- 17 December 2013
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013

CONTENT:

The IT acquisition manager needs to know that these are models and as models that can be adapted to meet the needs of the acquisition. Provided below is a general discussion of each of the models followed by a discussion on the ramifications of models that require a focus on software..
· Model 1: Hardware Intensive Program
· Classic” model that has existed in some form in all previous edition
· Hardware intensive development such as a major weapon systems platform
· Starting point for most weapon systems; however, almost always contain software development resulting in some form of Hybrid Model
· Requirements process baseline

· Model 2: Defense Unique Software Intensive Program
· Dominated by need to develop complex, usually defense unique, software program that will not be deployed until several software builds completed
· Key feature is planned software builds – series of testable, integrated capability subsets – which together with clearly defined decision criteria, ensure adequate progress before fully committing to subsequent builds
· Examples: military-unique command and control systems and upgrades to combat systems on weapons systems such as surface combatants and tactical aircraft
· Requirements process similar to Model 1

· Model 3: Incrementally Fielded Software Intensive Program
· Rapid delivery of capability using several limited fieldings in lieu of single MS-B and C and single full deployment
· Several builds and fieldings typically needed to satisfy approved req’ts for increment
· Applicable for COTS software, such as commercial business systems with multiple modular capabilities, are adapted for DoD
· Requirements process really does not much different accept in its implementation of incremental capabilities.

· Hybrid Models
· Hybrid Program A (Hardware Dominant)
· Depicts how a major weapons system combines h/w development as basic structure with s/w intensive development occurring simultaneously
· Design, fab, and testing of physical prototypes may determine overall schedule, decision points, and milestones, but software development often dictates pace of program execution and requires tight integration
· Builds should lead to full capability needed to satisfy requirements and IOC
· Milestone B/C decisions include software functional capability development maturity criteria as well as demonstrated technical performance exit criteria.
· Requirements process really does not much different accept in its implementation of incremental capabilities.

· Hybrid Program B (Software Dominant)
· Depicts how software intensive product development can include mix of incrementally fielded software products or releases that include intermediate software builds
· Risk Management: Highly-integrated, complex software and development risks must be managed throughout life cycle -- special interest at decision points and milestones
· Requirements process really does not much different accept in its implementation of incremental capabilities.

· Model 4: Accelerated Acquisition Program
· Applies when schedule dominates over cost and technical risk considerations
· Compresses or eliminates phases accepting potential for inefficiencies in order to achieve deployed capability on compressed schedule
· Model shows one example of tailoring with many others possible for products that must be developed and acquired ASAP, usually motivated by potential adversary achieving technological surprise, and featuring greater acceptance of program risk
· The model accepts changes in the requirement process that indeterminate.

· Additional discussion

· Defense Unique Software Intensive Program: A model of a program that is dominated by the need to develop a complex, usually defense unique, software program that will not be deployed until several software builds have been completed. The central feature of this model is the planned software builds – a series of testable, integrated subsets of the overall capability – which together with clearly defined decision criteria, ensure adequate progress is being made before fully committing to subsequent builds.
· Examples of this type of product include military unique command and control systems and significant upgrades to the combat systems found on major weapons systems such as surface combatants and tactical aircraft.
· Several software builds are typically necessary to achieve a deployable capability. Each build has allocated requirements, resources, and scheduled testing to align dependencies with subsequent builds and to produce testable functionality to ensure that progress is being achieved. The build sequencing should be logically structured to flow the workforce from effort to effort smoothly and efficiently, while reducing overall cost and schedule risk for the program.

· Incrementally Fielded Software Intensive Program: A model that has been adopted for many DBS. It also applies to upgrades to some command and control systems or weapons systems software where fielding will occur in multiple increments as new capability is developed and delivered, nominally in 1- to 2-year cycles.
· This model is distinguished from the previous model by the rapid delivery of capability through several limited fieldings in lieu of single Milestones B and C and a single full deployment. Each limited fielding results from a specific build, and provides the user with mature and tested sub-elements of the overall capability. Several builds and fieldings will typically be necessary to satisfy approved requirements for an increment of capability. The identification and development of technical solutions necessary for follow-on capabilities have some degree of concurrency, allowing subsequent increments to be initiated and executed more rapidly.
· This model will apply in cases where commercial off-the-shelf software, such as commercial business systems with multiple modular capabilities, are acquired and adapted for DoD applications. An important caution in using this model is that it can be structured so that the program is overwhelmed with frequent milestone or fielding decision points and associated approval reviews. To avoid this, multiple activities or build phases may be approved at any given milestone or decision point, subject to adequate planning, well-defined exit criteria, and demonstrated progress. An early decision to select the content for each follow-on increment (2 through N) will permit initiation of activity associated with those increments. Several increments will typically be necessary to achieve the required capability.
· Hybrid Acquisition Programs
· Hardware Dominant: A model depicting how a major weapons system combines hardware development as the basic structure with a software intensive development that is occurring simultaneously with the hardware development program. In a hardware intensive development, the design, fabrication, and testing of physical prototypes may determine overall schedule, decision points, and milestones, but software development will often dictate the pace of program execution and must be tightly integrated and coordinated with hardware development decision points. In this hybrid model, software development should be organized into a series of testable software builds, as depicted in Figure 7. These builds should lead up to the full capability needed to satisfy program requirements and Initial Operational Capability (IOC). Software builds should be structured so that the timing of content delivery is synchronized with the need for integration, developmental and operational testing in hardware prototypes. The Milestone B decision to enter EMD and the Milestone C decision to enter Production and Deployment should include software functional capability development maturity criteria as well as demonstrated technical performance exit criteria.
· Software Dominant: A software intensive product development can include a mix of incrementally fielded software products or releases that include intermediate software builds. All of the comments about incremental software fielding associated with Model 3 in paragraph 5.c.(3)(d) apply here as well. This is a complex model to plan and execute successfully, but depending on the product it may be the most logical way to structure the acquisition program. Risk Management in Hybrid Models. Highly integrated complex software and hardware development poses special risks to program cost and schedule performance. Technical, cost, and schedule risks associated with hardware and software development must be managed throughout the program’s life cycle and will be a topic of special interest at all decision points and milestones.

MT1.3. Understand the typical differences between system, hardware, and software acquisition development cycles and lifecycles and why they exist.
REFERENCES:

· Interim DoDI 5000.02, 26 Nov 2013, pp 9-11
· DEFENSE ACQUISITION GUIDEBOOK, CHAPTER 4, Section 4.1.3.1 - Software
https://acc.dau.mil/CommunityBrowser.aspx?id=638301
· Nidiffer, Kenneth, Potential Use of Agile Methods in Selected DoD Acquisitions: Requirements Development and Management, Technical Note: CMU/SEI-2013-TN-006–April 2013
· Wallnau, Kurt. Building Systems from Commercial Components, ISBN: 0-201-70064-6, Addison Wesley, 2002

CONTENT:
· Hardware Development Cycles: Hardware has different impacts on the acquisition lifecycle depending on whether the hardware is being developed (e.g., an airplane or a ship) or is COTS hardware that being purchased (e.g., computers and network devices). Hardware being developed typically takes a long time to develop and is often not usable until relatively complete, which typically results in a more sequential multi-year development cycle. On the other hand, commodity hardware can often be upgraded every couple of years, which typically results in a more incremental, iterative, and shorter-duration evolutionary development cycle.
· Software Development Cycles: More and more software is being developed in an evolutionary manner especially in IT systems, often with numerous short increments. Releases to program offices and fieldings typically happen somewhat more often due to issues such as the need to update training programs and provide useful increments of functionality and capabilities.
· System Development Cycles: Systems consisting of both hardware and software tend to have more complex, hybrid development cycles. There are also training issues and the access to major software-reliant systems (e.g., ships) and systems with numerous instances (e.g., aircraft) that often prevent hardware from being updated as rapidly as it potentially could. For example, it is becoming more common to see software fieldings every two years and hardware fieldings every four years for ship systems.

MT2.1. Realize that the responsibilities of the government acquisition office and that of the developer are different with regard to acquisition cycles. The government is responsible for defining major releases and their deployments as well as associated milestones and contractor/developer deliveries. The contractor/developer will have an internal set of developer-defined increments to manage their deliverables at a lower level (lowest level of WBS.

REFERENCES:

· Defense Acquisition Guidebook, Chapter 4, 5, and 11
· Fairley, Richard, Managing and Leading Software Projects, IEEE/Wiley, ISBN: 978-0-470-29455-0, 2009
· Nidiffer, Kenneth, et. al, Software Extension to the PMBOK Guide Fifth Edition, IEEE Computer Society and Project Management Institute, ISBN: 978-1-62825-013-8, 2013
· DoDD 5000.01 - The Defense Acquisition Systems
· Interim DoDI 5000.02 - Operation of the Defense Acquisition System (Dated 11-26-2013)

CONTENT:

· There are a general set of managing and leadership activities accomplished by both the government and contractor organizations in terms of planning, organizing; staffing; estimating; measuring and controlling processes; measuring and controlling product; risk management; leading; communication; and coordination. In general, the central differences is one organization is more focused on acquirer activities and mission accomplishment and the other is more focused on provider activities and profit. It is critical that both organizations have a keen understanding of what the other organization is focused on.
· Government Acquisition Offices: The government has several responsibilities with regard to software acquisition lifecycles once the contract is signed, such as:
· Planning the overall acquisition cycle within budget, schedule and technical/management constraints concentrating on releases to the government, fieldings to the warfighters, and oversight of the contractor/developer—internal development cycles.
· Management of major milestones, associated reviews, releases to the government, and fieldings to the warfighters
· Oversight of contractor/developer-internal development cycle including increments (builds) and associated inch-stones and in-process reviews.
· Effective communication, coordination and leadership with the program team, Government oversight teams and the developer
· Acquirer Development Organizations: The acquiring organization has several responsibilities with regard to software acquisition lifecycles, such as:
· Planning and executing the overall acquisition life-cycle processes concentrating on releases to the government within budget, schedule and technical/management constraints
· Developing, integrating and delivering quality work products that satisfy contractual agreements within budget, schedule and technical/management constraints.
· Management of activities supporting major milestones, associated reviews, releases to the government, and fieldings to the warfighters as specified by the contract.
· Oversight of subcontractor/developer-internal development cycle including increments (builds) and associated inch-stones and in-process reviews.
· Effective communication, coordination and leadership with the program/development team including subcontractors, contractor/government oversight teams and the customer

MT2.2. Understand the different reviews used during the acquisition lifecycle including Management Reviews, Milestone Reviews, and Engineering Reviews, both formal and informal.
REFERENCES:

· Interim DoDI 5000.02, 26 Nov 2013, pp 9-11,
http://standards.ieee.org/findstds/standard/29148-2011.html
· IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for Systems and Software Engineering—System Life Cycle Processes
· Fairley, Richard. Managing and Leading Software Projects, ISBN: 978-0-470-29455-0, 2009
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013
· ISO/IEC/IEEE 24765-2010 - Systems and software engineering -- Vocabulary
· OSD/SE Web Site: http://www.acq.osd.mil/se/initiatives/init_pp-sse.html
· DRAFT AFPAM 63-XXX Software Management, Page 113 - 116

CONTENT:

· The reviews and audits for a program are largely dictated by: (1) the magnitude of risk associated with the acquisition lifecycle for IT system (e.g. cost, schedule, requirements, and technology); (2) the technical focus (e.g. exploratory technologies (e.g. new internet of linking objects – IPV6), hardware centric (e.g. connecting networks); software centric (e.g. business application systems); system capabilities (e.g. mix of connecting networks other infrastructure hardware and electrical components; software system components; and IT applications) and (3) the program’s acquisition strategy versus reviews specified by a specific lifecycle. Given the magnitude of risk, technology focus and the program acquisition strategy one of the acquisition lifecycles may be more appropriate than the others and can be used to identify a set of suggested formal and informal reviews. In general, there is not a one size fits all set of reviews for the different acquisition cycles in terms of formal versus informal reviews; however, as a general rule, usually higher risk and highly valued IT system programs follow a more formal prescriptive life cycle with more extensive oversight mechanisms.

· Provided below is a nominal set of reviews for an ACAT 1D program. The designated milestone authority along with the acquisition program management designated representatives can tailor these reviews. The reviews are usually defined in the Acquirer’s and Supplier’s Management and Technical Plans (e.g., Program Management Plan (PMP); Software Development Plan; Systems Engineering Plan (SEP), Integrated Master Plan (IMP), etc.).

· Initial Technical Review (ITR).
· A multi-disciplined technical review to support a program’s initial POM submission.

· Assessment of Operational Test Readiness (AOTR).
· An independent assessment by the office of the USD(AT&L) of operational test readiness for all ACAT ID programs and special interest programs

· Alternative Systems Review (ASR).
· A technical review that demonstrates the preferred concept is cost effective, affordable, operationally effective and suitable, and can be developed to provide a timely solution to a need at an acceptable level of risk.

· System Functional Review (SFR).
· A formal review of the conceptual design of the system to establish its capability to satisfy requirements. It establishes the functional baseline.

· System Requirements Review (SRR).
· A formal, system-level review conducted to ensure that system requirements have been completely and properly identified and that a mutual understanding between the government and contractor exists.

· Software Specification Review (SSR).
· A subsystem formal review of requirements and interface specifications for computer software configuration items.

· Preliminary Design Review (PDR).
· A formal review that confirms the preliminary design logically follows the SFR findings and meets the requirements. It normally results in approval to begin detailed design.

· Critical Design Review (CDR).
· A formal review conducted to evaluate the completeness of the design and its interfaces.

· Test Readiness Review (TRR).
· A formal review of contractors’ readiness to begin testing on both hardware and software configuration items.

· Functional Configuration Audit (FCA).
· A formal review conducted to verify that all subsystems can perform all of their required design functions in accordance with their functional and allocated configuration baselines.

· System Verification Review (SVR).
· A formal review conducted to verify that the actual item (which represents the production configuration) complies with the performance specification.

· Physical Configuration Audit (PCA).
· A formal audit that establishes the product base line as reflected in an early production configuration item.

· Production Readiness Review (PRR).
· A formal examination of a program to determine if the design is ready for production, production engineering problems have been resolved, and the producer has accomplished adequate planning for the production phase.

· In-Service Review (ISR).
· A formal technical review that is to characterize in Service technical and operational health of the deployed system by providing an assessment of risk, readiness, technical status, and trends in a measurable form that will substantiate in-Service support and budget priorities.

· A check list of the entrance criteria and exist criteria for the more significant reviews relative to the Information Technology are provided below:

· Alternative Systems Review (ASR): Preferred alternative system concepts established

Entry Criteria:
 Applicable trade studies or other analyses have been conducted and a preferred solution identified.
 All required documents are established and delivered

Exit Criteria:
 Computer System & Software (CS&S) architectural trade off analyses identified, including architectural alternatives
 Hardware vis-à-vis software functional trade-off analyses identified
 Software demonstration and prototyping requirements identified
 Key software technologies defined
 CS&S risks identified with effective risk management strategy defined
 Concept and Technology Development (C&TD) software development requirements defined
 C&TD software development processes defined (contractors' plans)
 Test and Evaluation Master Plan (TEMP) updated to reflect
analyses and trade-off findings
 All action items are dispositioned and where appropriate, closed

· Review (SRR): System requirements established

Entry Criteria:
 C&TD software development requirements defined
 C&TD software development processes defined (contractors plan)
 All required documents are established and delivered

Exit Criteria:
 CS&S high level requirements defined in the System Specification
 CS&S demonstrations and prototyping plans are defined
 Preliminary software development process defined and documented
 Initial software development size estimates defined
 Software trade-offs addressing COTS, reuse, development risks, and architectures are identified and planned
 Initial allocation of functional requirements to hardware, software, and personnel defined
 Initial System/Software Engineering Environment (S/SEE) integrated software development tool requirements defined
 Software development training requirements identified
 Preliminary SD&D phase software development estimates established with effort, schedule, and cost analysis
 Programming languages and architectures, security requirements and operational and support concepts have been identified
 Preliminary software support data defined
 TEMP updated to reflect the requirements allocation and tradeoffs
 All action items are dispositioned and where appropriate, closed

· System Functional Review (SFR): Functional and performance requirements established

Entry Criteria:
 All required documents are established and delivered

Exit Criteria:
 CS&S requirements in the System Specification are complete
 Draft Preliminary Software Requirements Specifications defined, including complete verification requirements
 Initial CS&S architecture design is defined
 System/segment design approach defined, including the software architecture
 Software development process defined and reflected in IMP
 Specification tree is defined through subsystem development specifications, including interface specifications
 Draft subsystem/allocated functional specifications, including CS&S requirements, are complete
 Preliminary identification of the System/Software Engineering Environment tools and configuration is defined
 CS&S design/development approach confirmed through analyses, demonstrations, and prototyping
 Software process IMP/IMS events, schedule, task definitions, and metrics updated to reflect subsystem/allocated functional specification and further defined for the next phase
 Software requirements traceability defined through the higher tier specifications to the system/subsystem requirements
 Preliminary software risk management process refined
 Contract work breakdown structure defines all necessary software development work, consistent with the defined software development processes for the SD&D phase
 All necessary software development work consistent with the contractors defined software development process for the SD&D phase is defined in the CWBS
 Software development estimates for SD&D phase completed
 Software Development Plan (SDP) completed
 TEMP updated to incorporate subsystem and integration test requirements
 All action items are dispositioned and where appropriate

· Software Specification Review (SSR): software requirements established [internal contractor baseline]

Entry Criteria:
 Complete Software Requirements Specification (SRS) for each CSCI
 Complete Interface Requirements Specifications (IRSs)
 All required documents are established and delivered

Exit Criteria:
 Software development risk management process defined
 Software and interface requirements established in internal baselines
 Requirements allocation for first increment or for all planned increments (blocks/builds) defined (as applicable)
 Software and interface requirements allocated to CSCIs and Computer Software Units (CSU’s)
 Software requirements traceability between system/subsystem specifications and software requirements specification refined
 Software development schedules reflecting contractor selected processes and IMP/IMS events for CSCIs and CSUs refined
 Software metrics defined
 Prototypes and demonstrations identified and planned
 Life-cycle software support requirements defined
 Software requirements verification matrix established
 Software development test facilities defined
 Software size control program defined
 Software development estimates updated
 CS&S architecture requirements defined
 S/SEE tools and configuration requirements defined
 TEMP refined to reflect the CSCI and CSU test facilities and
plans
 All action items are dispositioned and where appropriate, closed

· Preliminary Design Review (PDR): software architectural design established [internal contractor baseline]

Entry Criteria:
 SRS and IRS are internally (developmental) baselined
 Software development process definition baselined and linked to IMP/IMS
 Software Specification Review (SSR) has been successfully completed
 Preliminary software design is defined and documented
 All required documents are established and delivered

Exit Criteria:
 Software risk management process refined and implemented
 Software architectural level design established
 S/SEE requirements and configuration are defined and internally controlled
 Software requirements baseline verified to satisfy system/subsystem functional requirements baseline
 Software increments (blocks and builds) defined and allocated
 Preliminary ICDs defined and documented
 Software metrics refined and implemented
 Software test plan refined and documented
 Initial plans established for software tools and software test environment validation
 Initial analysis to demonstrate requirements closure complete
 Initial evaluation of reused/COTS/OSS software completed
 Life-cycle software support requirements updated
 Software development process defined and implemented
 Software development estimates updated
 TEMP updated as needed to reflect any software increment testing
 All action items are dispositioned and where appropriate

· Critical Design Review (CDR): detailed software design established [internal contractor baseline]

Entry Criteria:
 Software detailed design is complete
 All required documents are established and delivered

Exit Criteria:
 Software requirements traceability established
 Software detailed level design established
 ICDs complete
 Software test descriptions complete
 Draft software test procedures complete
 Detailed software design and interface descriptions complete
 Software metrics defined and implemented
 Software development files established and maintained current
 Analysis to demonstrate design addresses all software requirements is complete
 Evaluation of reused/COTS/OSS software updated
 Software development estimates updated
 Software tools and software test environment validation completed
 TEMP updated to reflect test plans
 All action items are dispositioned and where appropriate, closed

· Test Readiness Review (TRR): test readiness established [internal contractor baseline]

Entry Criteria:
 Software design and code is internally baselined
 Software requirements, design, and code traceability is established
 Software test plan complete
 Software test descriptions and procedures are defined, verified, baselined, and compliant with plan
 Software test procedures are adequate to verify specified requirements
 Software tools and software test environment validated
 Test facilities and resources are complete and sufficient to support software testing within the defined schedule
 All required documents are established and delivered

Exit Criteria:
 Planned testing is consistent with defined incremental approach including regression testing
 Software unit and computer software component (CSC) testing is complete and documented in the software development files (SDFs)
 Test facilities/resources/measurement techniques verified to support verification
 Software metrics show readiness for testing
 Software problem report system is defined and implemented
 Software test baseline is established
 Software development estimates are updated
 All action items are dispositioned and where appropriate, closed

· Functional Configuration Audit (FCA): system / software performance and functional requirements verified

Entry Criteria:
 CSCIs are verified through all levels of hardware / software integration and test, and through subsystem integration and test
 Software product specification is complete
 CSCI test results are documented and CSCIs are acceptable for intended use
 All required documents are established and delivered

Exit Criteria:
 Software product specifications are baselined (including source code listings)
 Software requirements, design, and code traceability are established
 Software test reports are approved
 Software development files are complete
 CS&S functional and performance requirements have been verified against the specified system requirements through analysis of test results
 Required operational and support manuals / documents are complete
 All action items are dispositioned and where appropriate, closed
 All required software completion criteria are satisfied

· Physical Configuration Audit (PCA): product baseline established

Entry Criteria:
 All software documentation is complete and available for audit

Exit Criteria:
 Software product specification is verified against the as-built product
 Software support and operational data is complete and verified for accuracy
 Version description documents are completed and verified for accuracy
 Software metrics are complete
 All action items are dispositioned and where appropriate, closed

MT2.3. Understand the difference between Government-driven major milestone reviews and contractor/developer-driven in-progress reviews (IPRs).

REFERENCES:

· Defense Acquisition Guidebook, Chapter 4, Section 4.1.3.1 - Software https://acc.dau.mil/CommunityBrowser.aspx?id=638301
· IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for Systems and Software Engineering—System Life Cycle Processes
· Fairley, Richard. Managing and Leading Software Projects, ISBN: 978-0-470-29455-0, 2009
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013
· Systems Engineering Plan (SEP) Outline, Version 1.0, April 20, 2011
· DID SESS-81785 SEMP, April 20, 2011
· SEP Frequently Asked Questions (FAQs), February 8, 2011
· Guide for Integrating Systems Engineering into DoD Acquisition Contracts, Version 1.0, December 11, 2006
· Risk Management Guide for DoD Acquisition, 6th Edition, Version 1, August 2006
· IEEE 16326, Systems and Software Engineering — Life cycle processes — Project Management

CONTENT:

· Government-driven major milestone reviews conducted by the Government are activities performed to assess technical progress within a program, relative to contractual requirements and developmental maturity. In general they are conducted when the system under development meets the review entrance criteria as documented in the contract, Program Management Plan and the Systems Engineering Plan (SEP) – please see the milestone checklists provided above. Because they usually have contractual implications, they are more formal than contractor-driven in-progress reviews and usually involve a significant number of the Government and developer/contractor program technical and management team

· For example, the Government-driven major technical review objectives and criteria are applicable at all levels of the enterprise (e.g., system, subsystem, software, hardware) and of the development team (e.g., prime contractor, subcontractor, and other software team members). The contractor provides the technical products necessary to demonstrate that the program is technically progressing according to plan and is ready to move into the next activity, phase, or event. These products include, but are not limited to:
· A list of measurable metrics and accomplishments that demonstrate contractor planned progress and developmental maturity for the review conducted.
· Risk assessments and mitigation plans for all items or issues, especially, those on a critical path.
· Data that demonstrates performance that is accumulated and ready for review.
· Key decisions that are complete, executable, and fully supportable.
· Other items as specified by the contracting agency or as tailored by contract, prior to and specifically for each review.
· Elements that correspond with relevant events or items as contractually defined, incorporated, or expanded, e.g., IMP, IMS, SOW.
· Action items from previous technical reviews are completed and closed.

· Contractor/developer-driven in-progress reviews (IPRs) are nominally event driven and focus on specific items associated with the event. In general these reviews focus on technical progress, process and product constraints, and confront risk issues at a lower level of detail than Government-driven reviews.. They may contain components of the elements of all of the above items in a Government-driven major milestone review but are usually smaller in scope. They usually occur more often and are more informal.

MT2.4. Recognize that acquirers and developers manage schedules at different levels of detail such as formal milestones vs. informal inch pebbles.

REFERENCE:

· ISO/IEC 15288: Systems and Software Engineering—Systems Life Cycle Processes (2008)
· Department of Defense Directive 5000.01, The Defense Acquisition System May 12, 2003, Certified Current as of November 20, 2007
· Interim Department of Defense Instruction 5000.02, Operation of the Defense Acquisition System
November 25, 2013
· Fairley, Richard. Managing and Leading Software Projects, ISBN: 978-0-470-29455-0, 2009
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013
· IEEE 16326, Systems and Software Engineering — Life cycle processes — Project Management
· Systems Engineering Plan (SEP) Outline, Version 1.0, April 20, 2011
· DID SESS-81785 SEMP, April 20, 2011
· SEP Frequently Asked Questions (FAQs), February 8, 2011

CONTENT:

· The acquirer usually defines the type of government reviews in their RFP which includes a Statement of Work (SOW) and Statement of Objectives (SOO). Both the SOW and SOO should provide for incremental technical reviews. Each increment should have informal design reviews to assess the software design for that increment. If the increment is to be released to the user, then a test program (including an increment TRR) must be executed to verify that the requirements allocated to the increment have been met and that the software is ready for release. The formality level of these reviews needs to be negotiated between the Program Office and the contractor before development begins. These incremental reviews should be structured to support the program PDR and CDR.

· The main issue is to integrate the software development cadence to that of the overall system. Software reviews should be synchronized with the milestone and technical reviews at the system level. Software acquisition planning must consider interactions between the software architecture and its planned evolution with the system architecture. Changes in system architecture and subsequent hardware implications are likely to flow through to the software. Late changes to system architecture could occur after some parts of the software have been incrementally implemented. During acquisition planning, understanding the risks of system architecture changes can help the software team appropriately plan the software's evolution.

· Software increments or iterations may be represented in the IMP by a series of program events for each of the planned incremental releases. These should include, as a minimum, a release event for each planned increment. The IMS should reflect the lower level tasks required to implement each software increment, including incremental design reviews. The program office will need to address the possible discrepancies between the hardware and software schedules, and determine their impact to the overall program schedule.

· The developers manage their schedules at lower level of detail than required by the RFP. The primary reason for managing at this lower level of detail is their need to effectively manage and control their human resources, processes and products at a finer granularity.

MT 9. Understand the Software Development Plan (SDP), the Integrated Master Schedule (IMS), and the Work Breakdown Schedule (WBS) including their content, purpose, and how they relate to the acquisition development cycle.
REFERENCES:

· Interim DoDI 5000.02, 26 Nov 2013, paragraph 5.c.(3)
· Acquisition Community Connection, Integrated Master Plan (IMP)/Integrated Master Schedule (IMS).
· AFMC Pamphlet 63-5, November 11, 2004, Integrated Master Plan and Schedule Guide.
· Department of Defense, October 21, 2005, Integrated Master Plan and Integrated Master Schedule: Preparation and Use Guide, version 0.9, 2005
· Duquette, J., November 30, 2006, IMP/IMS Overview
· Systems Engineering Plan (SEP) Outline, Version 1.0, April 20, 2011
· DID SESS-81785 SEMP, April 20, 2011
· SEP Frequently Asked Questions (FAQs), February 8, 2011
· Guide for Integrating Systems Engineering into DoD Acquisition Contracts, Version 1.0, December 11, 2006
· Risk Management Guide for DoD Acquisition, 6th Edition, Version 1, August 2006
· IEEE 16326, Systems and Software Engineering — Life cycle processes — Project Management
· NASA Work Breakdown Structure (WBS) Handbook, 2010, p 23.

CONTENT:
· Describe the purpose and contents of a typical SDP.
· The Software Development Plan (SDP) describes a developer’s plans for conducting a software development effort. The SDP provides the acquirer insight and a tool for monitoring the processes to be followed for software development. It also details methods to be used and approach to be followed for each activity, organization, and resources. The SDP should be developed in the contractor‘s preferred format, and should document all processes applicable to the system to be acquired, at a level of detail sufficient to allow the use of the SDP as the full guidance for the developers. It should reference specific standards, methods, tools, actions, reuse strategy, and responsibility associated with the development and qualification of all requirements, including safety and security.
· The SDP may contain the following information, as applicable:
· Plan introduction and overview.
· Purpose, scope, and objectives.
· Assumptions and constraints.
· Relationship to other program plans.
· Referenced documents.
· Identification of all software and software products to which the SDP applies.
· Definition of terms and acronyms.
· System overview, including system and software architecture.
· Overview of required work, including:
· Requirements and constraints on the system and software to be developed.
· Software products and related deliverables.
· Requirements and constraints on project documentation.
· The program/acquisition strategy, resources, and schedules
· Additional requirements and constraints such as on project security, privacy, methods, standards, interdependencies in hardware and software development.
· Known software-specific risks.
· Project organization and resources:
· Plans for performing general software development activities, including:
· Software development processes.
· Software development approaches
· Software development methods.
· Software development standards
· Reusable software products and Commercial off-the-Shelf (COTS).
· Software types/categories (i.e., operational software, test software, support equipment software) and associated processes, controls, and documentation.
· Handling of critical requirements (such as safety, security, and information assurance).
· Incremental development approach, planning, and management/oversight.
· Establishing the system/software engineering environment.
· Computer resources utilization and reserve capacity/growth management.
· Software-related development processes, including:
· Overall development methodology.
· Prototyping and simulations.
· System requirements analysis and design, including requirements definition and allocation
· Software requirements analysis.
· Software preliminary and detailed design.
· Software unit integration and testing.
· Software component integration and testing.
· Supporting processes and information, including:
· Software risk management.
· Approach to requirements traceability.

· Describe the purpose and contents of a typical IMS.

· The IMS is an integrated, networked schedule containing all the detailed discrete work packages and planning packages (or lower level tasks of activities) necessary to support the events, accomplishments, and criteria of the IMP. The IMP is comprised of a hierarchy of program events, in which each event is supported by specific accomplishments, and each accomplishment is based on satisfying specific criteria to be considered complete.

· Describe the impact of a typical acquisition development cycle used on an incrementally fielded software intensive program on an IMS.

· Software increments or iterations may be represented in the IMP by a series of program events for each of the planned incremental releases. These should include, as a minimum, a release event for each planned increment. The IMS should reflect the lower level tasks required to implement each software increment, including incremental design reviews. The program office will need to address the possible discrepancies between the hardware and software schedules, and determine their impact to the overall program schedule.

· Describe the purpose and contents of a typical WBS.

· A WBS is a product-oriented family tree that identifies the hardware, software, services, and all other deliverables required to achieve an end project objective. The purpose of a WBS is to subdivide the project’s work content into manageable segments to facilitate planning and control of cost, schedule, and technical content. A WBS is developed early in the project development cycle. It identifies the total project work to be performed, which includes in-house work content and all work content to be performed by contractors, international partners, universities, or any other performing entities. Work scope not contained in the project WBS should not be considered part of the project. The WBS divides the work content into manageable elements, with increasing levels of detail.

· A sample software WBS is provided below (Ref: NASA Work Breakdown Structure (WBS) Handbook, 2010, p 23.
:
[image:]

· Describe the impact of a typical acquisition development cycle used on a hybrid – software dominant program on a WBS
· The characteristics of a Hybrid Program B (Software Dominant) are provided below:
· Depicts how software intensive product development can include mix of incrementally fielded software products or releases that include intermediate software builds
· Risk Management: Highly-integrated, complex software and development risks must be managed throughout life cycle -- special interest at decision points and milestones
· Requirements process really does not much different accept in its implementation of incremental capabilities
· The WBS for a software project for a NASA related Hybrid Program B is presented above. Reference the planned releases of functionality A,B and C and how the associated effort is characterized in different activities.

MT3.1. Understand the impact of the following factors on the acquisition lifecycle of a software-reliant system: the Completeness and Stability of the Requirements, the Development and Documentation of the Software Architecture, Software Reuse including use of COTS and open source software, Software Data Management and Technical Data Rights, the use of Modular Open Systems Approach, Data Protection and Software Assurance, Software Safety, Software Acquisition and Sustainment Costs, Technical Maturity Levels, and Post-Deployment Software Support (PDSS).
REFERENCES:

· Interim DoDI 5000.02, 26 Nov 2013, pp 9-11,
http://standards.ieee.org/findstds/standard/29148-2011.html
· IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for Systems and Software Engineering—System Life Cycle Processes
· Fairley, Richard. Managing and Leading Software Projects, ISBN: 978-0-470-29455-0, 2009
· A Multi-Level Approach to Addressing Systems Engineering Issues in Defense Programs NDIA Systems Engineering Division June 2009
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013
· Bass, Len et al, Software Architecture in Practice, 3rd Edition, SEI Series in Software Engineering, Addison Wesley, ISBN: 978-0-321-81573-6, 2012
· The Department of Defense (DoD) and Open Source Software, Oracle White Paper September 2013
· MITRE study, "Use of Free and Open Source Software (FOSS) in the U.S. Department of Defense", 2003
· Defense Acquisition Guidebook, Chapters 4, and 13, https://acc.dau.mil/CommunityBrowser.aspx?id=638301
· DoD Instruction 5200.44, Protection of Mission Critical Functions to Achieve Trusted Systems and Networks (TSN), November 5, 2012
· DoD Instruction 5200.39, Critical Program Information (CPI) Protection Within the Department of Defense, July 16, 2008
· USD(AT&L) Memorandum, Document Streamlining – Program Protection Plan (PPP), July 18, 2011
· Program Protection Plan Outline and Guidance, 2014
· Program Protection Plan Evaluation Criteria, Version 1.1, February 2014
· Defense Acquisition Guidebook Chapter 13, Program Protection
· Software Assurance Countermeasures in Program Protection Planning, March 2014
· Trusted Systems and Networks (TSN) Analysis, June 2014
· Suggested Language to Incorporate System Security Engineering for Trusted Systems and Networks into Department of Defense Requests for Proposals, January 2014
· Program Protection Tutorial: Presentation | Exercises | Notional Architecture Handout
· NDIA System Assurance Guidebook, Version 1.0
· Baldwin, Kristen, Jonathan Goodnight, John Miller, and Paul Popick, "The United States Department of Defense Revitalization of System Security Engineering Through Program Protection." Paper presented at the 6th Annual IEEE International Systems Conference, Vancouver, Canada, March 2012.
· Popick, Paul, and Melinda Reed, "Requirements Challenges in Addressing Malicious Supply Chain Threats," INCOSE Insight, July 2013.
· Reed, Melinda, "Comprehensive Program Protection Planning for the Materiel Solution Analysis (MSA) Phase." Presented at the 15th Annual NDIA Systems Engineering Conference, San Diego, CA, October 2012.
· Reed, Melinda, "System Security Engineering and Comprehensive Program Protection." Presented at the 16th Annual NDIA Systems Engineering Conference, Arlington, VA, October 2013 (Revised 4/17/2014).
· Hurt, Thomas, "DoD Software Assurance (SwA) Overview" Presented at the NDIA Program Protection Summit / Workshop, McLean, VA, May 19, 2014.
· Baldwin, Kristen, "DoD Program Protection" Presented at the NDIA Program Protection Summit / Workshop, McLean, VA, May 20, 2014.
· Reed, Melinda, "Program Protection Implementation Considerations" Presented at the NDIA Program Protection Summit / Workshop, McLean, VA, May 21, 2014.
· Reed, Melinda, John F. Miller, and Paul Popick, "Supply Chain Attack Patterns: Framework and Catalog," Office of the Deputy Assistant Secretary of Defense for Systems Engineering, August 2014.
· Wheeler, David A., and Rama S. Moorthy, "State-of-the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and Evaluation," Institute for Defense Analyses Report P-5061(July 2014): Report | Appendix E (Software State-of-the-Art Resources (SOAR) Matrix) (.xlsx format)
· Joint Software Systems Safety Engineering Handbook, developed by the joint software systems safety engineering workgroup, Original published December 1999, Version 1.0, Published August 27, 2010
· National Research Council’s Aging of U.S. Air Force Aircraft report, please visit www.nap.edu/catalog.php?record_id=5917.
· Air Force Science Advisory Board’s Sustaining Aging Aircraft report, please visit www.airforce-magazine.com/SiteCollectionDocuments/Reports/2010/December%202010/Day29/Aging_TOR_2011.pdf.
· National Research Council’s Critical Code: Software Producibility for Defense report www.nap.edu/openbook.php?record_id=12979&page=R1.
· Seacord, Robert. Modernizing Legacy Systems, Addison Wesley, 2003, ISBN 0-321-11884-7
CONTENT:
· Describe the impact of incomplete and unstable requirements on the acquisition lifecycle of a software-reliant system.
· Incomplete and unstable requirements negatively affect translation from capabilities statements into executable requirements to achieve successful acquisition programs. This is particularly relevant with respect to software because software enables a significant amount of functionality of our modern weapon systems.

· Describe the impact of developing and verifying a large and complex software architecture on the acquisition lifecycle of a software-reliant system.
· Software intensive systems are constructed to satisfy organizations’ business and mission goals. The architecture is a bridge between those (often abstract) business and mission goals and the final (concrete) resulting system. While the path from abstract goals to concrete systems can be complex, the good news is that software architectures can be designed, analyzed, documented, and implemented using know techniques that will support the achievement of these business and mission goals.

· Describe the impact of using a great deal of COTS and open source software on the acquisition lifecycle of a software-reliant system.
· The issues associated with using of COTS and open source software on the acquisition lifecycle of a software-reliant system are significant. Programs significantly underestimate the amount of effort and resource needed to successfully implement a COTS (or any) system. Even worse, they can have a wrong perception about how much work the vendor will do and how much work the client organization must do. It can come as quite a shock to many programs when they realize how much of an investment this really is to include COTS.
· When employing COTS software, criteria for selecting among competitive alternatives may not include details of commercial design or performance but should require ample evidence that the software is adequate for its intended use. Code-scanning tools should be used to help ensure that COTS software does not pose a security or software assurance risk. (See DAG Chapter 7 Acquiring Information Technology, Including National Security Systems and NIST-SP-800 series publications for additional information.) In addition, mitigation of security and information assurance risks associated with COTS software go beyond code-scanning techniques for their solution. Those risk mitigation efforts should be expanded to make use of activities identified in DAG section 4.3.18.24. System Security Engineering, as well as the activities discussed in DAG Chapter 13 Program Protection.
· That said, the 2003 MITRE study, "Use of Free and Open Source Software (FOSS) in the U.S. Department of Defense", for analysis purposes, posed the hypothetical question of what would happen if OSS software were banned in the DoD, and found that OSS "plays a far more critical role in the DoD than has been generally recognized... (especially in) Infrastructure Support, Software Development, Security, and Research". In particular, it found that DoD security "depends on (OSS) applications and strategies", and that a hypothetic ban "would have immediate, broad, and in some cases strongly negative impacts on the ability of the DoD to analyze and protect its own networks against hostile intrusion. This is in part because such a ban would prevent DoD groups from using the same analysis and network intrusion applications that hostile groups could use to stage cyberattacks. It would also remove the uniquely (OSS) ability to change infrastructure source code rapidly in response to new modes of cyberattack".
· The DoD CIO and the Services have released the following policies on Open Source Software:
· The DoD CIO issued a memorandum titled "Clarifying Guidance Regarding Open Source Software (OSS)" on 16 October 2009
· The Department of Navy CIO issued a memorandum with guidance on open source software on 5 Jun 2007. This memorandum only applies to Navy and Marine Corps commands, but may be a useful reference for others. This memo is available at http://www.doncio.navy.mil/PolicyView.aspx?ID=312 .
· The Open Technology Development Roadmap was released by the office of the Deputy Under Secretary of Defense for Advanced Systems and Concepts, on 7 Jun 2006. It is available at http://www.acq.osd.mil/jctd/articles/OTDRoadmapFinal.pdf .
· The Office of Management and Budget issued a memorandum providing guidance on software acquisition which specifically addressed open source software on 1 Jul 2004. It may be found at http://www.whitehouse.gov/omb/memoranda/fy04/m04-16.html .
· US Army Regulation 25-2, paragraph 4-6.h, provides guidance on software security controls that specifically addresses open source software. This regulation only applies to the US Army, but may be a useful reference for others. The regulation is available at http://www.army.mil/usapa/epubs/pdf/r25_2.pdf .
· The bottom lines is that the program needs to establish the software acquisition strategy as early as possible to address function and component allocation to software and determine what is to be developed, what is provided as Government off-the-shelf (GOTS) software, commercial-off-the-shelf (COTS) software, or open source software (OSS), and what is a mix or hybrid. The strategy should also incorporate plans for associated data and intellectual property rights for GOTS, COTS, and OSS.

· Describe the impact of using an evolutionary acquisition lifecycle on software data management and technical data rights.
· Technical data is critical in executing a PM’s life-cycle management responsibilities. Affordable product support and the ability to maximize competition require that the PM be involved in the development and execution of the program’s approach to intellectual property rights identified with the Technical Data Rights Strategy. A program’s Acquisition Strategy must be “forward thinking” with respect to intellectual property. Unless data rights considerations are considered up-front when developing an acquisition strategy, critical data and software may not be specified for delivery, rendering it unavailable (or unaffordable) years later for use on a program during its sustainment phase. For these reasons sustainment strategies need to be considered early on in a program’s life cycle and revisited in each phase of the evolutionary acquisition lifecycle.
· Data deliverables included in the RFPs and subsequent contracts
· It is important to note that Data Rights is a shorthand way to refer to the Government's license rights in two major categories of valuable intellectual property:
· Technical Data includes any recorded information of a scientific or technical nature (e.g., product design or maintenance data, computer databases, and computer software documentation).
· Computer Software includes executable code, source code, code listings, design details, processes, flow charts, and related material.
· Only under very unique circumstances does the Government acquire title to or ownership of technical data or computer software developed under DoD contracts – even if the Government funded 100% of the development. Instead, the Government acquires a license to use, release, or disclose that technical data or computer software to persons who are not Government employees. Therefore, the DoD negotiates over license rights and not ownership of technical data or computer software to be delivered under a contract.

· The PM needs to pay particular attention to the following areas of the Technical Data Rights Strategy as well as its execution to ensure that all data and software required to successfully sustain the system is available throughout the system’s life cycle. For example, the PM should consider:
· Data deliverables included in the RFPs and subsequent contracts
· Data rights, including the responses to the contractor’s data assertion lists
· The data management approach including how the data will be delivered, accessed, maintained, and protected
· Describe the impact of using a modular Open Systems Approach (OSA) on the acquisition lifecycle of a software-reliant system.
· The open systems initiative at the Department of Defense began in November 29, 1994, when the Under Secretary of Defense for Acquisition, Technology, and Logistics directed that all DoD components and agencies use open systems specifications and standards for acquisition of weapon systems and chartered the Open Systems Joint Task Force (OSJTF) as a jointly sponsored oversight body to oversee the implementation of the new policy. The OSJTF charter was extended several times during the last 10 years with its mission, functions, and responsibilities transferred to the Systems and Software Engineering Directorate – now the Office of the Deputy Assistant Secretary of Defense for Systems Engineering (DASD(SE)).
· The DoD preferred approach for implementation of open systems, previously called Modular Open Systems Approach (MOSA), is now called Open Systems Architecture (OSA). OSA is both a business and technical strategy for developing a new system or modernizing an existing one. OSA enables acquisition and engineering communities to design for affordable change, employ evolutionary acquisition and spiral development, and develop an integrated roadmap for system design and development. Basing design strategies on widely supported open standards increases the chance that future changes to the system will be integrated in a cost-effective manner.
· Open systems employ modular design, use widely supported and consensus-based standards for their key interfaces, and have been subjected to successful validation and verification tests to ensure the openness of their key interfaces. Open systems characteristics and principles may be dealt with as:

(1) design requirements (e.g., mandated open standards and protocols);
(2) derived requirements (e.g., need for open interfaces to enable interoperability);
(3) design constraints (e.g., need to adhere to open interface specifications as system components are designed);
(4) architectural attributes (e.g., need for an adaptable, upgradable, and reconfigurable system architecture);
(5) design considerations (e.g., taking into consideration modular and open systems design benefits and concerns); and
(6) business strategies to gain access to competitive sources of supply and effectively manage technological obsolescence.

· Describe the impact using a typical incrementally fielded software intensive program acquisition development cycle on data protection and software assurance.

· Program Protection is the Department's "integrating process for mitigating and managing risks to advanced technology and mission-critical system functionality from foreign collection, design vulnerability, or supply chain exploitation/insertion, battlefield loss, and unauthorized or inadvertent disclosure throughout the acquisition lifecycle" (DAG Chapter 13). The following policy and guidance documents have been released
· DoD Instruction 5200.44, Protection of Mission Critical Functions to Achieve Trusted Systems and Networks (TSN), November 5, 2012
· DoD Instruction 5200.39, Critical Program Information (CPI) Protection Within the Department of Defense, July 16, 2008
· USD(AT&L) Memorandum, Document Streamlining – Program Protection Plan (PPP), July 18, 2011
· Program Protection Plan Outline and Guidance: Word | PDF
· Program Protection Plan Evaluation Criteria, Version 1.1, February 2014
· Defense Acquisition Guidebook Chapter 13, Program Protection | PDF Version
· Software Assurance Countermeasures in Program Protection Planning, March 2014
· Trusted Systems and Networks (TSN) Analysis, June 2014
· Suggested Language to Incorporate System Security Engineering for Trusted Systems and Networks into Department of Defense Requests for Proposals, January 2014
· Program Protection Tutorial (current as of October 2013): Presentation | Exercises | Notional Architecture Handout
· NDIA System Assurance Guidebook, Version 1.0

· The following recent papers and presentations have been written:
· Baldwin, Kristen, Jonathan Goodnight, John Miller, and Paul Popick, "The United States Department of Defense Revitalization of System Security Engineering Through Program Protection." Paper presented at the 6th Annual IEEE International Systems Conference, Vancouver, Canada, March 2012.
· Popick, Paul, and Melinda Reed, "Requirements Challenges in Addressing Malicious Supply Chain Threats," INCOSE Insight, July 2013.
· Reed, Melinda, "Comprehensive Program Protection Planning for the Materiel Solution Analysis (MSA) Phase." Presented at the 15th Annual NDIA Systems Engineering Conference, San Diego, CA, October 2012.
· Reed, Melinda, "System Security Engineering and Comprehensive Program Protection." Presented at the 16th Annual NDIA Systems Engineering Conference, Arlington, VA, October 2013 (Revised 4/17/2014).
· Hurt, Thomas, "DoD Software Assurance (SwA) Overview" Presented at the NDIA Program Protection Summit / Workshop, McLean, VA, May 19, 2014.
· Baldwin, Kristen, "DoD Program Protection" Presented at the NDIA Program Protection Summit / Workshop, McLean, VA, May 20, 2014.
· Reed, Melinda, "Program Protection Implementation Considerations" Presented at the NDIA Program Protection Summit / Workshop, McLean, VA, May 21, 2014.
· Reed, Melinda, John F. Miller, and Paul Popick, "Supply Chain Attack Patterns: Framework and Catalog," Office of the Deputy Assistant Secretary of Defense for Systems Engineering, August 2014.
· Wheeler, David A., and Rama S. Moorthy, "State-of-the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and Evaluation," Institute for Defense Analyses Report P-5061(July 2014): Report | Appendix E (Software State-of-the-Art Resources (SOAR) Matrix) (.xlsx format)

· Describe the impact using a typical hybrid – software dominant acquisition development cycle on software safety.

· Since the development of the digital computer and computing devices, software and firmware logic continues to play an important and evolutionary role in the operation and control of hazardous, safety-critical functions (SCFs). The reluctance of the engineering community to relinquish human control of hazardous operations has diminished over the last 25 years. Today, digital computer systems have autonomous control over safety-critical functions in nearly every major technology, both commercially and within Government systems. This revolution is due primarily to the ability of software to perform critical control tasks reliably at speeds unmatched by its human counterpart. Other factors influencing this transition are the ever-growing need for increased versatility, higher performance capability, greater efficiency, increased network interoperability, and decreased Lifecycle cost. In most instances, properly designed software can meet all of these attributes for system performance. The logic of the software allows for decisions to be implemented with speed and accuracy without the human operator in the decision-making loop.

· Describe the impact of using a typical defense unique software intensive program acquisition development cycle on software acquisition and sustainment costs.

· Department of Defense (DoD) programs have traditionally focused on the software acquisition phase (initial procurement, development, production, and deployment) and largely discounted the software sustainment phase (operations and support) until late in the lifecycle. The costs of software sustainment are becoming too high to discount since they account for 60 to 90 percent of the total software lifecycle effort. Moreover, in an era where DoD new-start programs are being reduced in favor of prolonging legacy systems, significant software sustainment cost increases are themselves unsustainable. The growing expense and prolonging of legacy systems motivates the need for greater discipline and attention on defining and applying appropriate methods and technologies to improve sustainment capabilities and efficiencies.

· Software sustainment involves coordinating the processes, procedures, people, information, and databases required to support, maintain, and operate software-reliant aspects of DoD systems. DoD software sustainment needs and practices are shaped by various trends, including
· rapid performance advances driven by Moore’s Law and associated hardware innovations, which accelerate technology refresh cycles,
· the prevalence of commercial-off-the-shelf software technologies and practices, which commoditizes the market for software engineers with modern skills, but creates gaps for projects that need staff with expertise in older technologies,
· the need to adapt software to address diminishing manufacturing sources stemming from the loss of producers or suppliers of hardware used in DoD systems,
· the challenges of modernizing and recapitalizing legacy DoD systems in a constrained budget environment that emphasizes greater efficiency and productivity in defense spending, and
· the repurposing of systems to meet new threats and increasing requirements for interoperability.
· The confluence of these trends impacts the workload, risk, and cost of acquisition program sustainment processes and professionals. These trends also contribute to the growth in total ownership costs across program lifecycles.

· Newer DoD systems rely more on software than older systems did, so the demands on software sustainment organizations are increasing as current generations of DoD systems transition from production to sustainment. For example, the percentage of avionics specification requirements involving software control has risen from approximately 8 percent of the F-4 in 1960 to 45 percent of the F-16 in 1982, 80 percent of the F-22 in 2000, and 90 percent of the F-35 in 2006. This growing reliance on software now affects most aspects of DoD systems, including mission data systems, radars/sensors, flight/engine controls, communications, mission planning/execution, weapons deployment, test infrastructure, program lifecycle management systems, and software integration labs.
· Not only are we dealing with a growing software base, but also the constantly-evolving environment in which software runs. For example, although software does not wear out, firmware and hardware become obsolete, thereby requiring software modifications. Likewise, upgraded capability must be integrated into existing systems and software defects and performance bottlenecks must continually be identified, fixed, and optimized to provide full functionality. It should therefore not be surprising that the DoD expends an increasing amount of time and effort sustaining software, often much more than was originally anticipated due to uncertainties during initial program cost estimation. While programs can take funds from later phases to cover development overruns, the sustainment phase has nothing after it to prey upon but itself!
· High software sustainment costs occur for various reasons. For example, functionality originally provided by hardware may be replaced by software (e.g., fly-by-wire), thereby increasing software sustainment costs. Periodic software upgrades and enhancements throughout the lifecycle of DoD systems may also result in unanticipated increases in sustainment costs. Moreover, costly and time-consuming effort is required by software maintainers to understand the original design and carefully make changes to avoid degrading the integrity of the design or negatively impacting key quality attributes. In addition, software scale and complexity are growing significantly to meet the expanded threat spectrum, which drives sustainment costs up.
· As sustainment costs have increased, the DoD is struggling to support all its legacy systems. Economic strategies for understanding and addressing these rising costs are affected by a key difference between DoD weapon system platforms and the software running in those platforms (example of weapons systems platforms include the physical airframes, hulls, chassis, and their associated parts like engines, weapons, sensors, and computing/communication units). The DoD has historically viewed sustainment from a weapon-system-platform perspective—where physical manufacturing and handling wear-and-tear represent a significant expense. From this perspective, sustainment costs are primarily a function of the number of weapon system platforms and parts. The DoD has traditionally handled these burgeoning costs by shrinking its inventory (for example, by retiring and/or reducing the numbers of aging aircraft, ship, and vehicle platforms).
· This traditional approach worked when sustainment costs were largely a function of weapon system platform and part manufacturing costs. In contrast, software sustainment has essentially no manufacturing or wear and tear expenses. As a result, software sustainment costs are primarily a function of the number of software variants. For example, a particular weapon system platform family (such as a class of ships, planes, or vehicles) may have scores of software variants reflecting different sensor, processing hardware, operating system, and network/bus configurations; different algorithms; and different security profiles allowed for use by customers from different countries. Sustaining all these variants impacts the time and effort required to assure, optimize, and manage system deployments and configurations throughout the lifecycle.
· As software variability grows—as it inevitably does in legacy systems unless a concerted effort is made to rein it in—it becomes increasingly hard to avoid adding unnecessary variability, re-implementing variation mechanisms more than once, selecting incompatible or awkward variation mechanisms, and missing required variations. The DoD is therefore facing “sticker shock” since software sustainment costs are unlikely to decrease by shrinking its inventory alone since roughly the same level of software sustainment is still needed, regardless of whether there are 100 or 10,000 hardware platforms. What the DoD needs are different strategies for understanding and alleviating rising software sustainment costs—such as sustainment strategies based on managing software commonality and variability via software product lines.
· In addition to the challenges above, the DoD also faces challenges with recruiting, developing, and retaining its software sustainment workforce. For example, although the DoD needs efficient and productive software sustainers, this specialty is often not viewed as exciting or innovative as green-field developments, so key research and development challenges remain unresolved. Effective sustainment also requires engineers who have expertise in older languages, operating platforms, and tools combined with deep domain and software architect knowledge. This combination tends to reside in more experienced members of the DoD workforce, so retaining and replenishing this cadre of software engineers is important..

· Describe the impact of using having low technical maturity levels on the acquisition lifecycle of a software-reliant system.
· An impact of low technical maturity levels is that managers often do not grasp the significance of the syntax and semantics of the term “low maturity levels”. For example, one problem with the term “maturity levels" is that if you are on the low end of the scale, you are "immature" by definition. Being at a lower level of maturity does not mean that the members of a software organization are barely breathing (as one manager put it). It does mean that the organization's projects are likely to have less predictability, more rework, more defects, and more schedule slippage than those in a higher maturity organization.

· Describe the impact of using a highly evolutionary acquisition lifecycle on Post-Deployment Software Support (PDSS).
· Depending on the system being delivered, there can be a significant number of variables associated with the incremental deliveries that can impact post-deployment software support. These variables are often context specific and need to be addressed up-front in the acquisition live cycle (e.g. acquisition strategy).
· Evolutionary acquisition is an acquisition strategy structured to deliver capability in increments, recognizing, up front, the need for future capability improvements. The objective is to balance needs and available capability with resources, and to put capability into the hands of the user quickly. The success of the strategy depends on phased definition of capability needs and system requirements, and the maturation of technologies that lead to disciplined development and production of systems that provide increasing capability over time. The impact on PDSS is largely determined on a well-reason the acquisition strategy that effectively addresses post-deployment software support. Software sustainment involves coordinating the processes, procedures, people, information, and databases required to support, maintain, and operate software-reliant aspects of DoD systems. How well this is done with respect to incremental deliveries needs to be addressed upfront in the acquisition lifecycle or the classical problems will arise.
· From an IT acquisition managers perspective, it is important to focus on identifying the cost of support and sources for sustainment in the program plan and associated support plans.

MT4.1. Given a proposed software system lifecycle approach, recommend changes which might improve the effectiveness and efficiency of a system over its lifecycle Consider the following factors: the Completeness and Stability of the Requirements, the Development and Documentation of the Software Architecture, Software Reuse including use of COTS and open source software, Software Data Management and Technical Data Rights, the use of Modular Open Systems, Data Protection and Software Assurance, Software Safety, Software Acquisition and Sustainment Costs, Technical Maturity Levels, and Post-Deployment Software Support (PDSS)
REFEERENCES

· B. Boehm, R. Turner, Balancing Agility and Discipline, Addison Wesley, 2004.
· B. Boehm, W. Hansen, “The Spiral Model as a Tool for Evolutionary Acquisition,” Cross Talk, May 2001.
· B. Boehm, D. Port, “Balancing Discipline and Flexibility with the Spiral Model and MBASE,” CrossTalk, December 2001, pp. 23-28.
· Guidelines for Successful Acquisition and Management of Software-Intensive Systems: Weapon Systems,
Command and Control Systems, and Management Information Systems, USAF, 2010
· Foreman, John. Lessons Learned from a Large, Multi-Segment, Software-Intensive System
· Agile Manifesto, 2001
· 25 Point Implementation Plan To Reform Federal Information Technology Management, Vivek Kundra, U.S. Chief Information Officer, December 9, 2010
· Achieving Effective Acquisition of Information Technology in the Department of Defense, Study Conducted by Computer Science and Telecommunications Board National Research Council, led by Dr Steven Kimmel

CONTENT

· Recommended changes to the Software Architecture, Software Reuse including use of COTS and open source software, Software Data Management and Technical Data Rights, the use of Modular Open Systems, Data Protection and Software Assurance, Software Safety, Software Acquisition and Sustainment Costs, Technical Maturity Levels, and Post-Deployment Software Support (PDSS) are addressed in other places in this document.

· The U.S. Air Force's Software Technology Support Center provided an updated and condensed version of the Guidelines for Successful Acquisition and Management of Software Intensive Systems (GSAM) which also addresses MT4.1.
· Focus on the true customer.
· Spend more energy communicating with this customer and working towards a quality product for the program. Minimize, as much as possible, the time spent talking about the encompassing politics but focus instead on innovation, collaboration, and flexibility.
· Understand the importance of the full lifecycle of our program and the accompanying product or service.
· Baseline our requirements and project scope as soon as possible.
· Break up our program into smaller phases or multiple projects, if necessary, to gain the advantage of incremental success.
· Introduce measurements into our programs and appropriately use them for better predictability of costs, schedule, and quality and management of the program as it progresses. These measurements being used to also stimulate increased accountability into our cultures.
· Talk about the risks associated with our programs and projects, and focusing on, tracking, and managing the key risks.
· Capture relevant data, lessons learned, and other historical information from our programs with a mantra of organizational learning, regardless of the potential and actual staff and management turnover.
· Work towards and emphasize sponsorship in our improvement efforts, where leaders and managers understand these principles and "walk the talk."

· Agile development emerged in 2001, when 17 leading software developers created the Agile Manifesto to design and share better ways to develop software. The values and 12 principles of the Agile Manifesto can be distilled into four core elements:
· Focusing on small, frequent capability releases
· Valuing working software over comprehensive documentation
· Responding rapidly to changes in operations, technology, and budgets
· Actively involving users throughout development to ensure high operational value

· Relative to IT Systems, a 25 Point Implementation Plan To Reform Federal Information Technology Management, was put forward by Vivek Kundra, U.S. Chief Information Officer, on December 9, 2010
1. Complete detailed implementation plans to consolidate 800 data centers by 2015
2. Create a government-wide marketplace for data center availability
3. Shift to a “Cloud First” policy
4. Stand-up contract vehicles for secure IaaS solutions
5. Stand-up contract vehicles for “commodity” services
6. Develop a strategy for shared services
7. Design a formal IT program management career path
8. Scale IT program management career path
9. Require Integrated Program Teams
10. Launch a best practices collaboration platform
11. Launch technology fellows program
12. Enable IT program manager mobility across government and industry
13. Design and develop cadre of specialized IT acquisition professionals
14. Identify IT acquisition best practices and adopt government-wide
15. Issue contracting guidance and templates to support modular development
16. Reduce barriers to entry for small innovative technology companies
17. Work with Congress to create IT budget models that align with modular development
18. Develop supporting materials and guidance for flexible IT budget models
19. Work with Congress to scale flexible IT budget models more broadly
20. Work with Congress to consolidate Commodity IT spending under Agency CIO
21. Reform and strengthen Investment Review Boards
22. Redefine role of Agency CIOs and Federal CIO Council
23. Rollout “TechStat” model at bureau-level
24. Launch “myth-busters” education campaign
25. Launch an interactive platform for pre-RFP agency-industry collaboration

· The Computer Science and Telecommunications Board National Research Council provided the following insights into needed changes associated with IT systems:
· DOD systems acquisition policies, expertise, practice, and culture reflect the norms associated with large weapon systems programs
· Weapon system acquisition processes are often applied to IT systems acquisition, without addressing unique aspects of IT
· Dollar thresholds for assigning oversight levels on IT programs are much lower than for weapons system oversight --disparity that subjects too many IT Programs to OSD level oversight rather than delegation to lower levels that are more agile
· DOD acquisition, budgeting, and requirements processes are being inappropriately applied to relatively low dollar IT programs
· IT program requirements are often written with overly detailed specifications that are inconsistent with the pace of technological change and need for rapid delivery of end user capabilities
· [bookmark: 8]The “waterfall” process used for large IT programs is too document intensive, time consuming, and process bound to respond effectively to end user needs
· Although program tailoring is an option, DOD has no established best practice for tailoring and it is seldom used
· The DOD acquisition training curriculum does not adequately address IT system acquisition or facilitate adoption of applicable commercial methods, processes, products, and services
· DOD is unable to keep pace with the rate of IT innovation in the commercial marketplace, cannot fully capitalize on IT based opportunities, and seldom delivers IT based capabilities rapidly
· With the exception of IT purchased via vehicles like Enterprise Software Initiative contracts, COTS technologies are insufficiently leveraged, excessively tailored, inefficiently tested, and delayed
· [bookmark: 9]Absent discipline and end user advocacy, large acquisition oversight bodies can give undue leverage to low value added process requirements or “corner case” desires of any participant,
· which disproportionately impacts on program cost and schedule
· Testing is integrated too late and serially in current DOD IT systems acquisition practices with testing in realistic operational environments deferred until the mandated operational test
· Without regular feedback from a user perspective on IT system development, insight necessary to manage and oversee such programs is inadequate
· The acquisition community has been reluctant to embrace virtualized testing and overtly precluded from reusing or accessing operationally relevant test data and environments
· To more rapidly deliver software capability, the commercial world has widely embraced the iterative, incremental, development (IID) approach which deals with complexity and features breaking down a project into incrementally deliverable increments
NOTE1: There are differing effects on the cost, schedule and functionality of provisioning a capability based on the approach chosen.
REFERANCES:

· Interim DoDI 5000.02, 26 Nov 2013, paragraph 5.c.(3)
· Defense Acquisition University presentation - Interim DoDI 5000.02 -- The Cliff Notes Version -- A Quick Glance at New Guidance -- 17 December 2013
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013
· Air Force Science Advisory Board’s Sustaining Aging Aircraft report, please visit www.airforce-magazine.com/SiteCollectionDocuments/Reports/2010/December%202010/Day29/Aging_TOR_2011.pdf.
· National Research Council’s Critical Code: Software Producibility for Defense report www.nap.edu/openbook.php?record_id=12979&page=R1.
· Seacord, Robert. Modernizing Legacy Systems, Addison Wesley, 2003, ISBN 0-321-11884-7

CONTENT:

· The acquirer usually defines the provisioning of capabilities in their RFP which includes a Statement of Work (SOW) and Statement of Objectives (SOO). Both the SOW and SOO should allow incremental capability deliveries. Each increment should have informal design reviews to assess the software design for that increment. If the increment is to be released to the user, then a test program (including an increment TRR) must be executed to verify that the requirements allocated to the increment have been met and that the software is ready for release and handover including provisioning. The formality level of these releases needs to be negotiated between the Program Office, support organizations and the contractor before development begins. These incremental releases should be structured to support program PDRs, CDRs, TRRs, FCAs, SVRs, PCAs, PRRs, ISRs, etc.

· The main issue is to integrate the software development cadence to that of the overall system. Software increments should be synchronized with the milestone and technical reviews at the system level. Software acquisition planning must consider interactions between the software architecture and its planned evolution with the system architecture. Changes in system architecture and subsequent hardware implications are likely to flow through to the software. Late changes to system architecture could occur after some parts of the software have been incrementally implemented. During acquisition planning, understanding the risks of system architecture changes can help the software team appropriately plan the software's evolution.

· Software increments or iterations may be represented in the IMP by a series of program events for each of the planned incremental releases. These should include, as a minimum, a release event for each planned increment. The IMS should reflect the lower level tasks required to implement each software increment, including incremental design reviews. The program office will need to address the possible discrepancies between the hardware and software schedules, and determine their impact to the overall program schedule.

· The negotiated procurement baseline specifies the payment schedule and associated criteria and is usually based on the capability approach taken and the amount of risk assumed by both developer and acquired.

· Provided below is a general discussion of each of the models followed by a discussion on the ramifications of models that require a focus on software..
· Model 1: Hardware Intensive Program
· Classic” model that has existed in some form in all previous edition
· Hardware intensive development such as a major weapon systems platform
· Starting point for most weapon systems; however, almost always contain software development resulting in some form of Hybrid Model
· Requirements process baseline

· Model 2: Defense Unique Software Intensive Program
· Dominated by need to develop complex, usually defense unique, software program that will not be deployed until several software builds completed
· Key feature is planned software builds – series of testable, integrated capability subsets – which together with clearly defined decision criteria, ensure adequate progress before fully committing to subsequent builds
· Examples: military-unique command and control systems and upgrades to combat systems on weapons systems such as surface combatants and tactical aircraft
· Requirements process similar to Model 1

· Model 3: Incrementally Fielded Software Intensive Program
· Rapid delivery of capability using several limited fieldings in lieu of single MS-B and C and single full deployment
· Several builds and fieldings typically needed to satisfy approved req’ts for increment
· Applicable for COTS software, such as commercial business systems with multiple modular capabilities, are adapted for DoD
· Requirements process really does not much different accept in its implementation of incremental capabilities.

· Hybrid Program A (Hardware Dominant)
· Depicts how a major weapons system combines h/w development as basic structure with s/w intensive development occurring simultaneously
· Design, fab, and testing of physical prototypes may determine overall schedule, decision points, and milestones, but software development often dictates pace of program execution and requires tight integration
· Builds should lead to full capability needed to satisfy requirements and IOC
· Milestone B/C decisions include software functional capability development maturity criteria as well as demonstrated technical performance exit criteria.
· Requirements process really does not much different accept in its implementation of incremental capabilities.

· Hybrid Program B (Software Dominant)
· Depicts how software intensive product development can include mix of incrementally fielded software products or releases that include intermediate software builds
· Risk Management: Highly-integrated, complex software and development risks must be managed throughout life cycle -- special interest at decision points and milestones
· Requirements process really does not much different accept in its implementation of incremental capabilities.

· Model 4: Accelerated Acquisition Program
· Applies when schedule dominates over cost and technical risk considerations
· Compresses or eliminates phases accepting potential for inefficiencies in order to achieve deployed capability on compressed schedule
· Model shows one example of tailoring with many others possible for products that must be developed and acquired ASAP, usually motivated by potential adversary achieving technological surprise, and featuring greater acceptance of program risk
· The model accepts changes in the requirement process that indeterminate.

NOTE2. Recognize that there are various reviews and schedules used during this process - Management Reviews, Milestone reviews, Engineering Reviews both formal and informal.
REFERENCES:

· Interim DoDI 5000.02, 26 Nov 2013, pp 9-11,
http://standards.ieee.org/findstds/standard/29148-2011.html
· IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for Systems and Software Engineering—System Life Cycle Processes
· Fairley, Richard. Managing and Leading Software Projects, ISBN: 978-0-470-29455-0, 2009
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013
· ISO/IEC/IEEE 24765-2010 - Systems and software engineering -- Vocabulary
· OSD/SE Web Site: http://www.acq.osd.mil/se/initiatives/init_pp-sse.html
· DRAFT AFPAM 63-XXX Software Management, Page 113 – 116

CONTENT:

· Please see content associated with MT2.2.

NOTE3. Recognize that acquirers and developers manage schedules at different levels of detail -milestones vs. inch pebbles.

REFERENCES:

· Defense Acquisition Guidebook, Chapter 4, Section 4.1.3.1 - Software https://acc.dau.mil/CommunityBrowser.aspx?id=638301
· IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for Systems and Software Engineering—System Life Cycle Processes
· Fairley, Richard. Managing and Leading Software Projects, ISBN: 978-0-470-29455-0, 2009
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013
· Systems Engineering Plan (SEP) Outline, Version 1.0, April 20, 2011
· DID SESS-81785 SEMP, April 20, 2011
· SEP Frequently Asked Questions (FAQs), February 8, 2011
· Guide for Integrating Systems Engineering into DoD Acquisition Contracts, Version 1.0, December 11, 2006
· Risk Management Guide for DoD Acquisition, 6th Edition, Version 1, August 2006
· IEEE 16326, Systems and Software Engineering — Life cycle processes — Project Management
· Joint Software Systems Safety Handbook, August 27, 2010
· Military Standard (MIL-STD) 882E “Department of Defense Standard Practice System Safety, 11 May 2012

CONTENT:

· Please see content associated with MT2.2, MT2.3 and MT3.1.
· Additional content:
· Establish the software acquisition strategy as early as possible to address function and component allocation to software and determine what is to be developed, what is provided as Government off-the-shelf (GOTS) software, commercial-off-the-shelf (COTS) software, or open source software (OSS), and what is a mix or hybrid. The strategy also incorporates plans for associated data and intellectual property rights for GOTS, COTS, and OSS.

· Software-intensive acquisitions typically involve modeling and simulation (M&S) in engineering support roles specific to each phase of acquisition. Example uses of M&S in software acquisition are to:
• Study development cost by function,
• Study feasibility of the prospective system in the intended operational environment,
• Conduct engineering trade-offs and analyses of alternatives,
• Study and refine viability of planned software, computers, and networks to meet KPPs,
• Simulate undeveloped equipment during software testing, and
• Emulate the interoperability environment of the system during integration.
· M&S activities are most valuable earlier in program planning as decision support tools and may be used iteratively to assess evolving software architectures. The cost of M&S is allocated during initial program planning. Cost basis is the rationale supporting the balance between M&S cost and degree of needed risk reduction. M&S used by a Program Manager to make decisions should be verified and validated to the intended use in a time frame before assessment is needed. Data used by M&S to support assessments should have a known pedigree and should be adequate to the level of assessment. See DAG section 4.3.19.1. Modeling and Simulation for more information.
· An incremental software development approach enables the developers to deliver capability in a series of manageable increments and releases to gain user acceptance and feedback for the next increment and reduce the overall level of risk. Frequent requirements and design-validation activities involving the end users and developers can assist the program to define viable increments of capabilities that have operational value for early fielding before the whole system capability is delivered. This incremental approach may not be viable when the end system is not usable until the entire set of essential capabilities is integrated and tested. For example, weapon systems are dependent upon software for real-time controls that can affect life and safety. As such, these weapon systems are required to be qualified and certified for security, safety, and interoperability before being released for operational use. In addition, safety and security assurance certifications and approvals require a predetermined objective level of rigor in verification, validation, and accreditation (VV&A) of these software releases. This VV&A is based on risk, not on the complexity, number of software lines of code (SLOC), or size of each software release. The Joint Software Systems Safety Handbook and MIL-STD-882E, DoD Standard Practice for System Safety provide guidance for developing safety-critical software with the reasonable assurance that the software executes within the system context and is at an acceptable level of safety risk.
· Iterative development approaches should be planned well in advance and should consider impacts to other system elements of the functional architecture or other interconnecting systems. The program should focus on the allocation of functional architecture elements to the physical architecture and identifying the interdependencies and associated technical risks as part of determining the content for each iteration or build. Incremental or iterative development should be employed to carefully define the final end state of the supporting physical hardware elements when functionality or capability is to be added over time. Memory, processor overhead, and input/output capacity should be designed to support growth in capability. Implementing an open systems architecture (OSA) as part of the software architecture and development increases design flexibility, supports incremental deliveries, allows for opportunities to use COTS and OSS, facilitates future upgrades and modifications, and supports technology insertion (see DAG sections 4.3.18.4. Commercial-Off-the-Shelf and 4.3.18.15. Open Systems Architecture).
· Software considerations occur and vary throughout the acquisition life cycle, with specific activities associated with each acquisition phase described in Table 4.1.3.1.T1.

	Phase
	Software Considerations

	Materiel Solution Analysis
	Some system requirements map directly to software requirements, while others can be implemented in hardware or firmware, providing opportunities for trade-offs and studies that optimize design and reduce vulnerabilities and risks. The ability to analyze and model options, and articulate the pros and cons of each, can have long-range impacts on the delivered system, suitability for intended use, and ultimate life-cycle cost.

	Technology Development
	Competitive prototyping of software-intensive systems helps to identify and mitigate technical risks. System prototypes may be physical or math models and simulations that emulate expected performance. High-risk concepts may require scaled models to reduce uncertainty too difficult to resolve purely by mathematical emulation. On occasion, competitive full-scale prototypes are needed to resolve cost/benefit alternatives between competing software-intensive system architectures. Software programs typically conduct a Software Specification Review (SSR) to assess the software requirements and interface specifications for computer software configuration items, in support of the Preliminary Design Review (PDR). The software trouble reporting system is in operation and may be used to track any remediation in design and software code and unit testing.

	Engineering and Manufacturing Development
	Performance, and test requirements, along with the development and software/systems integration facilities to be employed in coding and integrating the deliverable software. Software and systems used for computer software configuration item development such as simulations and emulations, should be validated, verified, and, starting the implementation and synthesis of the software products. Software trouble reporting is used extensively to track problems and problem criticality levels. Problem report metadata should be selected so that the reports are relevant in development, test, and in operation to tracking and assessments. Typically, software functions vary in mission-, safety-, and security-criticality so that problems reported in those functions are more critical to the system. There is legacy problem report tracking information that can be used to generally profile and predict which types of software functions may accrue what levels of problem reports. Program progress decisions can be made based on assessments of patterns of problem reports among software components of the system.

	Production and Deployment
	Software may be refined as needed in response to operational test and evaluation activities and in support of the Full-Rate Production and/or Full Deployment Decision and Initial Operational Capability.

	Operations and
Support
	The In-Service Review (ISR) assesses user acceptance and potential upgrades on delivered software systems. A block change or follow-on incremental development may be defined that delivers maintenance, safety, or urgent builds and upgrades to the field in a controlled manner. Procedures for updating and maintaining software on fielded systems can require operators to download new builds or to install them from physical media, and may require more training. Procedures should be in place to support effective configuration management and control. There are inherent risks involved in modifying software on fielded systems upon which warfighters depend while engaged in frontline activities. Another aspect of the hardware-software interaction is that maliciously altered devices or inserted software can infect the supply chain, creating unexpected changes to systems. Vigilance is needed as part of supply chain risk management (see DAG Chapter 5 Life-Cycle Logistics and Chapter 13 Program Protection). Upon completion of development, the problem report tracking system can be used with other factors as legacy information to inform system and component upgrades. During Operations and Support phase, software problem reporting is continued.

REFERENCES:

Interim DoDI 5000.02, 26 Nov 2013, paragraph 5.c.(2)

CONTENT:

· Generic Acquisition Milestones and Decision Points
· Need Identification, called the Materiel Development Decision by DoD, is the decision that a new product is needed and that activities to analyze alternative solutions will occur.
· Risk Reduction Decision, called Milestone A by DoD, is an investment decision to pursue specific product or design concepts, and to commit the resources required to mature technology and/or reduce any risks that must be mitigated prior to decisions committing the resources needed for development leading to production and fielding.
· The decision to commit resources to the development of a product for manufacturing and fielding, called Engineering and Manufacturing Development (EMD) by DoD, follows completion of any needed technology maturation and risk reduction. DoD breaks this commitment into three related decisions: (1) a requirements decision point (called the CDD Validation Decision by DoD); (2) a decision to release a solicitation for development to industry, called the Development Request for Proposals (RFP) Release Decision Point; and (3) a decision to award the contract(s) for development, called Milestone B by DoD. Formally, the development contract award authorized at DoD’s Milestone B is the critical decision point in an acquisition program because it commits the organization’s resources to a specific product, budget profile, choice of suppliers, contract terms, schedule, and sequence of events leading to production and fielding. In practice however, almost all of these decisions have to be made prior to the release of the RFP to industry in order to inform the bidders’ proposals. For DoD, the RFP release decision point is the point at which plans for the program must be most carefully reviewed to ensure all risks are understood and under control, the program plan is sound, and that the program will be affordable and executable.
· Requirements Decision Point (CDD Validation Decision for DoD). The point at which the major cost and performance trades have been completed and enough risk reduction has been completed to support a decision to commit to the set of requirements that will be used for preliminary design activities, development, and production (subject to reconsideration and refinement as knowledge increases).
· Development RFP Release Decision. The point at which planning for development is complete and a decision can be made to release an RFP for development (and possibly initial production) to industry.
· Development Decision, called Milestone B by DoD. The development decision commits the resources (authorizes proceeding to award of the contract(s)) needed to conduct development leading to production and fielding of the product.
· The decision to enter production follows development and testing. For DoD, the production decision is normally broken into two DoD decisions: (1) Initial Production or Initial Fielding, called Milestone C by DoD; and (2) the Full Rate Production or Full Fielding Decision.
· The Initial Production Decision. The production decision, usually based on developmental testing results, commits the resources (i.e., authorizes proceeding to award the contract(s)) required to enter production and begin fielding of the product. Evidence from testing that the product design is stable is the critical consideration for this decision. The commitment to enter production is very difficult and expensive to reverse.
· Full Rate Production/Full Deployment Decision. The decision, following completion of operational testing of representative initial production products, to scale up production and/or fielding.
· While these generic decision points and milestones are standard, MDAs have full latitude to tailor programs in the most effective and efficient structure possible, to include eliminating phases and combining or eliminating milestones and decision points, unless constrained by statute. Paragraph 5.d provides more detail about the standard structure, milestones, and decision points as they apply to most defense acquisition programs. Enclosure 1 includes tables of specific requirements for the various statutory categories of programs.
· Enclosures 11 through 13 provide additional information about each of the following statutory or regulatory product categories: Information Technology (IT) (described in Enclosure 11), DBS (described in Enclosure 12), and Urgent Needs (described in Enclosure 13).

REFERENCE:

Defense Acquisition Guidebook, Chapter 4, Section 4.2.1 Life-cycle Expectations

CONTENT:
Table 4.2.1.T1. Technical Maturity Points
	TECHNICAL MATURITY POINTS

	DoD Acquisition Milestone/Decision Point
&
Technical Review/Audit
	Objective
	Technical Maturity Point
	Additional Information

	Materiel Development Decision (MDD)
	Decision to assess potential materiel solutions and appropriate phase for entry into acquisition life cycle.
	Capability gap met by acquiring a materiel solution.
	Technically feasible solutions have the potential to effectively address a validated capability need. Technical risks understood.

	Alternative Systems Review (ASR)
	Recommendation that the preferred materiel solution can affordably meet user needs with acceptable risk.
	System parameters defined; balanced with cost, schedule, and risk.
	Initial system performance established and plan for further analyses supports Milestone A criteria.

	Milestone A
	Decision to invest in technology maturation and preliminary design.
	Affordable solution found for identified need with acceptable technology risk, scope, and complexity.
	Affordability targets identified and technology development plans, time, funding, and other resources match customer needs. Prototyping and end-item development strategy for Technology Development (TD) phase focused on key technical risk areas.

	System Requirements Review (SRR)
	Recommendation to proceed into development with acceptable risk.
	Level of understanding of top-level system requirements is adequate to support further requirements analysis and design activities.
	Government and contractor mutually understand system requirements including
(1) the preferred materiel solution (including its support concept) from the Materiel Solution Analysis (MSA) phase,
(2) available technologies resulting from the prototyping efforts, and
(3) maturity of interdependent systems.

	System Functional Review (SFR)
	Recommendation that functional baseline fully satisfies performance requirements and to begin preliminary design with acceptable risk.
	Functional baseline established and under formal configuration control. System’s functions decomposed and defined to lower levels in order to start preliminary design.
	Functional requirements and verification methods support achievement of performance requirements. Acceptable technical risk of achieving allocated baseline.

	Preliminary Design Review (PDR)
	Recommendation that allocated baseline fully satisfies user requirements and with acceptable risk.
	Allocated baseline established such that system design provides sufficient confidence to support 2366b certification.
	Preliminary design and basic system architecture support capability need and affordability target achievement.

	Pre-Engineering and Manufacturing Development (EMD) Review
	Determination that program plans are affordable and executable and that the program is ready to proceed to EMD phase source selection.
	Systems engineering trades completed and have informed program requirements. Competitive prototyping and the development of the system preliminary design have influenced risk management plans and should cost initiatives.
	The Request for Proposal (RFP) reflects the program’s plans articulated in the draft Acquisition Strategy and other draft, key planning documents such as the Systems Engineering Plan (SEP), Program Protection Plan (PPP), Test and Evaluation Master Plan (TEMP), and Life-Cycle Sustainment Plan (LCSP).

	Milestone B
	Decision to invest in product development, integration, and verification as well as manufacturing process development.
	Critical technologies assessed able to meet required performance and are ready for further development. Resources and requirements match.
	Maturity, integration, and producibility of the preliminary design (including critical technologies) and availability of key resources (time, funding, other) match customer needs. Should cost goals defined.

	Critical Design Review (CDR)
	Recommendation to start fabricating, integrating, and testing test articles with acceptable risk.
	Product design is stable. Initial product baseline established.
	Design is stable and performs as expected. Initial product baseline established by the system detailed design documentation confirms affordability/should-cost goals. Government control of Class I changes as appropriate.

	System Verification Review (SVR)
	Recommendation that the system as tested has been verified (i.e., product baseline is compliant with the functional baseline) and is ready for validation (operational assessment) with acceptable risk.
	System design verified to conform to functional baseline.
	Actual system (which represents the production configuration) has been verified through required analysis, demonstration, examination, and/or testing. Synonymous with system-level Functional Configuration Audit (FCA).

	Production Readiness Review (PRR)
	Recommendation that production processes are mature enough to begin limited production with acceptable risk.
	Design and manufacturing are ready to begin production.
	Production engineering problems resolved and ready to enter production phase.

	Milestone C
	Decision to produce production-representative units for operational test and evaluation (OT&E).
	Manufacturing processes are mature enough to support Low-Rate Initial Production (LRIP) and generate production-representative articles for OT&E.
	Production readiness meets cost, schedule, and quality targets. Begin initial deployment as appropriate.

	Physical Configuration Audit (PCA)
	Recommendation to start full-rate production and/or full deployment with acceptable risk.
	Final product baseline established. Verifies the design and manufacturing documentation matches the item to be fielded, following update of the product baseline to account for resolved OT&E issues.
	Confirmation that the system to be fielded matches the product baseline. Product configuration finalized and system meets users’ needs. Conducted after OT&E issues are resolved.

	Full-Rate Production Decision Review (FRP DR) or Full Deployment Decision Review (FDDR)
	Decision to begin full-rate production and/or decision to begin full deployment.
	Manufacturing processes are mature and support full-rate production and/or capability demonstrated in operational environment supporting full deployment (i.e., system validated through OT&E).
	Delivers fully funded quantity of systems and supporting materiel and services for the program or increment to the users.

NOTE4. There are various methods principles and tools to consider when planning for the lifecycle of a software system: Software Development Plan (SDP), Post-Deployment Software Support (PDSS), Data Protection and Software Assurance, Software Data Management and Technical Data Rights, Software Reuse, Software Acquisition and Sustainment Costs, Software Safety, the use of Modular Open Systems, and a documented software architecture.

REFERENCE:

· Interim DoDI 5000.02, 26 Nov 2013, pp 9-11,
http://standards.ieee.org/findstds/standard/29148-2011.html
· IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for Systems and Software Engineering—System Life Cycle Processes
· Fairley, Richard. Managing and Leading Software Projects, ISBN: 978-0-470-29455-0, 2009
· A Multi-Level Approach to Addressing Systems Engineering Issues in Defense Programs NDIA Systems Engineering Division June 2009
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013
· Bass, Len et al, Software Architecture in Practice, 3rd Edition, SEI Series in Software Engineering, Addison Wesley, ISBN: 978-0-321-81573-6, 2012
· The Department of Defense (DoD) and Open Source Software, Oracle White Paper September 2013
· MITRE study, "Use of Free and Open Source Software (FOSS) in the U.S. Department of Defense", 2003
· Defense Acquisition Guidebook, Chapters 4, and 13, https://acc.dau.mil/CommunityBrowser.aspx?id=638301
· DoD Instruction 5200.44, Protection of Mission Critical Functions to Achieve Trusted Systems and Networks (TSN), November 5, 2012
· DoD Instruction 5200.39, Critical Program Information (CPI) Protection Within the Department of Defense, July 16, 2008
· USD(AT&L) Memorandum, Document Streamlining – Program Protection Plan (PPP), July 18, 2011
· Program Protection Plan Outline and Guidance, 2014
· Program Protection Plan Evaluation Criteria, Version 1.1, February 2014
· Defense Acquisition Guidebook Chapter 13, Program Protection
· Software Assurance Countermeasures in Program Protection Planning, March 2014
· Trusted Systems and Networks (TSN) Analysis, June 2014
· Suggested Language to Incorporate System Security Engineering for Trusted Systems and Networks into Department of Defense Requests for Proposals, January 2014
· Program Protection Tutorial: Presentation | Exercises | Notional Architecture Handout
· NDIA System Assurance Guidebook, Version 1.0
· Baldwin, Kristen, Jonathan Goodnight, John Miller, and Paul Popick, "The United States Department of Defense Revitalization of System Security Engineering Through Program Protection." Paper presented at the 6th Annual IEEE International Systems Conference, Vancouver, Canada, March 2012.
· Popick, Paul, and Melinda Reed, "Requirements Challenges in Addressing Malicious Supply Chain Threats," INCOSE Insight, July 2013.
· Reed, Melinda, "Comprehensive Program Protection Planning for the Materiel Solution Analysis (MSA) Phase." Presented at the 15th Annual NDIA Systems Engineering Conference, San Diego, CA, October 2012.
· Reed, Melinda, "System Security Engineering and Comprehensive Program Protection." Presented at the 16th Annual NDIA Systems Engineering Conference, Arlington, VA, October 2013 (Revised 4/17/2014).
· Hurt, Thomas, "DoD Software Assurance (SwA) Overview" Presented at the NDIA Program Protection Summit / Workshop, McLean, VA, May 19, 2014.
· Baldwin, Kristen, "DoD Program Protection" Presented at the NDIA Program Protection Summit / Workshop, McLean, VA, May 20, 2014.
· Reed, Melinda, "Program Protection Implementation Considerations" Presented at the NDIA Program Protection Summit / Workshop, McLean, VA, May 21, 2014.
· Reed, Melinda, John F. Miller, and Paul Popick, "Supply Chain Attack Patterns: Framework and Catalog," Office of the Deputy Assistant Secretary of Defense for Systems Engineering, August 2014.
· Wheeler, David A., and Rama S. Moorthy, "State-of-the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and Evaluation," Institute for Defense Analyses Report P-5061(July 2014): Report | Appendix E (Software State-of-the-Art Resources (SOAR) Matrix) (.xlsx format)
· Joint Software Systems Safety Engineering Handbook, developed by the joint software systems safety engineering workgroup, Original published December 1999, Version 1.0, Published August 27, 2010
· National Research Council’s Aging of U.S. Air Force Aircraft report, please visit www.nap.edu/catalog.php?record_id=5917.
· Air Force Science Advisory Board’s Sustaining Aging Aircraft report, please visit www.airforce-magazine.com/SiteCollectionDocuments/Reports/2010/December%202010/Day29/Aging_TOR_2011.pdf.
· National Research Council’s Critical Code: Software Producibility for Defense report www.nap.edu/openbook.php?record_id=12979&page=R1.
· Seacord, Robert. Modernizing Legacy Systems, Addison Wesley, 2003, ISBN 0-321-11884-7
· Defense Acquisition Guidebook, Chapter 4, Section 4.1.3.1 – Software, https://acc.dau.mil/CommunityBrowser.aspx?id=638301
· MIL-HDBK-347 Mission-Critical Computer Resources, May 1990
CONTENT:

· Reference MT3.1.
· Additional Comments:
· Establish the software acquisition strategy as early as possible to address function and component allocation to software and determine what is to be developed, what is provided as Government off-the-shelf (GOTS) software, commercial-off-the-shelf (COTS) software, or open source software (OSS), and what is a mix or hybrid. The strategy also incorporates plans for associated data and intellectual property rights for GOTS, COTS, and OSS.
· Software-intensive acquisitions typically involve modeling and simulation (M&S) in engineering support roles specific to each phase of acquisition. Example uses of M&S in software acquisition are to:
• Study development cost by function,
• Study feasibility of the prospective system in the intended operational environment,
• Conduct engineering trade-offs and analyses of alternatives,
• Study and refine viability of planned software and computers to meet KPPs,
• Simulate undeveloped equipment during software testing, and
• Emulate the interoperability environment of the system during integration.
· M&S activities are most valuable earlier in program planning as decision support tools and may be used iteratively to assess evolving functional architectures. The cost of M&S is allocated during initial program planning. Cost basis is the rationale supporting the balance between M&S cost and degree of needed risk reduction. M&S used by a Program Manager to make decisions should be verified and validated to the intended use in a time frame before assessment is needed. Data used by M&S to support assessments should have a known pedigree and should be adequate to the level of assessment. See DAG section 4.3.19.1. Modeling and Simulation for more information.
· An incremental software development approach enables the developers to deliver capability in a series of manageable releases or builds to gain user acceptance and feedback for the next increment and reduce the overall level of risk. Frequent requirements and design-validation activities involving the end users and developers can assist the program to define viable increments of capabilities that have operational value for early fielding before the whole system capability is delivered. This incremental approach may not be viable when the end system is not usable until the entire set of essential capabilities is integrated and tested. For example, weapon systems are dependent upon software for real-time controls that can affect life and safety. As such, these weapon systems are required to be qualified and certified for security, safety, and interoperability before being released for operational use. In addition, safety and security assurance certifications and approvals require a predetermined objective level of rigor in verification, validation, and accreditation (VV&A) of these software releases. This VV&A is based on risk, not on the complexity, number of software lines of code (SLOC), or size of each software release. The Joint Software Systems Safety Handbook provides guidance for implementing safety-critical software designs with the reasonable assurance that the software executes within the system context and is at an acceptable level of safety risk.
· Iterative development approaches should be planned well in advance and should consider impacts to other system elements of the functional architecture or other interconnecting systems. The program should focus on the allocation of functional architecture elements to the physical architecture and identifying the interdependencies and associated technical risks as part of determining the content for each iteration or build. Incremental or iterative development should be employed to carefully define the final end state of the supporting physical hardware elements when functionality or capability is to be added over time. Memory, processor overhead, and input/output capacity should be designed to support growth in capability. Implementing an open systems architecture (OSA) as part of the software design and development increases design flexibility, supports incremental deliveries, allows for opportunities to use COTS and OSS, facilitates future upgrades and modifications, and supports technology insertion (see DAG sections 4.3.18.4. Commercial-Off-the-Shelf and 4.3.18.15. Open Systems Architecture).
· Software considerations occur and vary throughout the acquisition life cycle, with specific activities associated with each acquisition phase described in Table 4.1.3.1.T1.

	
Phase
	
Software Considerations

	Materiel Solution Analysis
	Some system requirements map directly to software requirements, while others can be implemented in hardware or firmware, providing opportunities for trade-offs and studies that optimize design and reduce vulnerabilities and risks. The ability to analyze and model options, and articulate the pros and cons of each, can have long-range impacts on the delivered system, suitability for intended use, and ultimate life-cycle cost.

	Technology Development
	Competitive prototyping of software-intensive systems helps to identify and mitigate technical risks. System prototypes may be physical or math models and simulations that emulate expected performance. High-risk concepts may require scaled models to reduce uncertainty too difficult to resolve purely by mathematical emulation. On occasion, competitive full-scale prototypes are needed to resolve cost/benefit alternatives between competing software-intensive system designs. Software programs typically conduct a Software Specification Review (SSR) to assess the software requirements and interface specifications for computer software configuration items, in support of the Preliminary Design Review (PDR). The software trouble reporting system is in operation and may be used to track any remediation in design and software code and unit testing.

	Engineering and Manufacturing Development
	To demonstrate that the detailed software design is complete at Critical Design Review (CDR), software documentation should represent the design, performance, and test requirements, along with the development and software/systems integration facilities to be employed in coding and integrating the deliverable software. Software and systems used for computer software configuration item development such as simulations and emulations, should be validated, verified, and ready to begin coding upon completion of the CDR, starting the implementation and synthesis of the software products. Software trouble reporting is used extensively to track problems and problem criticality levels. Problem report metadata should be selected so that the reports are relevant in development, test, and in operation to tracking and assessments. Typically, software functions vary in mission criticality so that problems reported in those functions are more critical to the system. There is legacy problem report tracking information that can be used to generally profile and predict which types of software functions may accrue what levels of problem reports. Program progress decisions can be made based on assessments of patterns of problem reports among software components of the system.

	Production and Deployment
	Software may be refined as needed in response to operational test and evaluation activities and in support of the Full-Rate Production and/or Full Deployment Decision and Initial Operational Capability.

	Operations and
Support
	The In-Service Review (ISR) assesses user acceptance and potential upgrades on delivered software systems. A block change or follow-on incremental development may be defined that delivers maintenance, safety, or urgent builds and upgrades to the field in a controlled manner. Procedures for updating and maintaining software on fielded systems can require operators to download new builds or to install them from physical media, and may require more training. Procedures should be in place to support effective configuration management and control. There are inherent risks involved in modifying software on fielded systems upon which warfighters depend while engaged in frontline activities. Another aspect of the hardware-software interaction is that maliciously altered devices or inserted software can infect the supply chain, creating unexpected changes to systems. Vigilance is needed as part of supply chain risk management (see DAG Chapter 5 Life-Cycle Logistics and Chapter 13 Program Protection). Upon completion of development, the problem report tracking system can be used with other factors as legacy information to inform system and component upgrades. During Operations and Support phase, software problem reporting is continued.

· Factors for Managing Software-Intensive Systems
· Programs consider several factors when managing software-intensive systems, including the following:
· Software Development Plan (SDP): The SDP as a best practice provides details below the level of the Systems Engineering Plan (SEP) and the contractor’s Systems Engineering Management Plan (SEMP) for managing software development and integration. The SDP Data Item Description (DID) DI-IPSC-81427A is a tailorable template and a useful starting point in defining a software development plan. The SDP provides the Systems Engineer with insight into, and a tool for monitoring, the processes being followed by the developer for each activity, the project schedules, the developer’s software organization, and resource allocations.
· Post-Deployment Software Support (PDSS): The management of the software development process and the implementation of a process that ensures software supportability are among two of the most difficult challenges facing the Program Manager in management of software-intensive systems. The Program Manager should effectively address the issues of software supportability, the software test environment, and other equipment, material, and documentation, including data rights that are required to provide PDSS for those end users identified in the SDP or in other documents similar to the Computer Resources Life Cycle Management Plan. (For more information on PDSS see MIL-HDBK-347). Successful PDSS planning should assist the Program Manager in controlling software life-cycle costs.
· Data Protection and Software Assurance: These factors are defined as the level of confidence that software functions as intended and is free of vulnerabilities, either intentionally or unintentionally designed or inserted as part of the software code, throughout the acquisition life cycle. The Program Manager is responsible for protecting system data and software, whether the data are stored and managed by the program office or by the developer (see DAG Chapter 13 Program Protection).
· Software Data Management and Technical Data Rights: Rights associated with commercial products can be highly restrictive and are defined in licenses that may restrict the number of copies made and ability to alter the product. Often there is no assurance of suitability for intended purposes and no recourse to the vendor. Open source, sometimes referred to as “freeware,” may not be free and may also have restrictions or carry embedded modules that are more restrictive than the overall package. The Program Manager, Systems Engineer, software engineer, and contracting officer should be familiar with the restrictions placed on each software item used in the contract or deliverable to the Government. The Program Office should determine the necessary intellectual property rights to computer software and should ensure that the intellectual property right should be determined in advance of the RFP and contract award and that they are acquired as needed, including:
· All requirements tools and data sets;
· All test software and supporting information necessary to build and execute the tests;
· All other software test tools such as interface simulators and test data analyzers whether custom-developed or not; and
· All information for defects remaining in the software upon delivery to the Government.
· Software Reuse: The reuse of any system, hardware, firmware, or software should be addressed in multiple plans and processes throughout the acquisition life cycle, including the SEP, SDP, firmware development plan, configuration management plan, test plans (Test and Evaluation Master Plan, Software Test Plan, Independent Verification and Validation Plan), and quality assurance plans (system and software). (Note: Software reuse has traditionally been overestimated in the beginning of programs, and software reuse has often proven to be more costly than new software development. Software reuse plans should be monitored as a potential risk.) For more discussion of the reuse of software, see DAG section 4.3.18.15. Open Systems Architecture.
· Software Acquisition and Sustainment Costs: Related costs should be accurately estimated in advance and then tracked to monitor execution within program cost constraints using relevant metrics (size, complexity, productivity factors, quality, development organization’s past performance/productivity, etc.).
· Government and Industry Teaming: Teaming is needed in order for the Government to successfully acquire software-reliant systems with industry as a partner. As a result of the teaming agreement, the Government may be able to use the experience and expertise of its industry partner. Extensive teaming with industry makes it incumbent on the Government to ensure that it maintains current and applicable software engineering expertise.
· Software Safety: Software safety is applicable to most DoD systems as a factor of the ubiquitous nature of software-driven functions, network connectivity, and systems of systems (SoS). Specific mandatory certifications such as “air worthiness certification” require attention early in the development cycle to ensure adequate documentation and testing are planned and executed to meet certification criteria. Systems Engineers are encouraged to check with certification authorities frequently because rules can change during development.

NOTE5. There are differing effects to the cost, schedule and functionality of provisioning a capability based on the approach chosen.

REFERENCES:

· Defense Acquisition Guidebook, Chapter 4, Section 4.1.3.1 - Software
https://acc.dau.mil/CommunityBrowser.aspx?id=638301
· Interim DoDI 5000.02, 26 Nov 2013, pp 9-11,
http://standards.ieee.org/findstds/standard/29148-2011.html
· IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for Systems and Software Engineering—System Life Cycle Processes
· Fairley, Richard. Managing and Leading Software Projects, ISBN: 978-0-470-29455-0, 2009
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013
· ISO/IEC/IEEE 24765-2010 - Systems and software engineering -- Vocabulary
· OSD/SE Web Site: http://www.acq.osd.mil/se/initiatives/init_pp-sse.html
· DRAFT AFPAM 63-XXX Software Management, Page 113 - 116

CONTENT:

Reference MT2.2., MT2.3., and MT2.4.

NOTE6. Recognize that tensions will exist between hardware cycles and software cycles which will affect the frequency of software releases to the program office and the end users.

REFERENCES:

· Defense Acquisition Guidebook, Chapter 4, Section 4.1.3.1 - Software
https://acc.dau.mil/CommunityBrowser.aspx?id=638301
· Interim DoDI 5000.02, 26 Nov 2013, pp 9-11,
http://standards.ieee.org/findstds/standard/29148-2011.html
· IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for Systems and Software Engineering—System Life Cycle Processes
· Fairley, Richard. Managing and Leading Software Projects, ISBN: 978-0-470-29455-0, 2009
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013
· ISO/IEC/IEEE 24765-2010 - Systems and software engineering -- Vocabulary
· OSD/SE Web Site: http://www.acq.osd.mil/se/initiatives/init_pp-sse.html
· DRAFT AFPAM 63-XXX Software Management, Page 113 – 116
· Gross, Charlene. Incorporating Software Requirements into the System RFP, SEI Special Report CMU/SEI 2009-SR-008, May 2009

CONTENT:

· Reference content associated with MT2.2.
· Additional Comments:
· A software intensive systems at a minimum is a collection of hardware and software. The software product may be required to operate on a variety of hardware platforms in order to perform its required functions. Software as a standalone entity is useless. To be of use, software is executed on digital hardware. If that digital hardware is not available, the automated functions to be excited by the software cannot be realized as intended; thus, it is important for the IT acquisition program manager to plan the hardware cycles and software cycles so that there is not a conflict.

NOTE7. Considerations for recommended changes could include - Software Development Plan (SDP), Post-Deployment Software Support (PDSS), Data Protection and Software Assurance, Software Data Management and Technical Data Rights, Software Reuse, Software Acquisition and Sustainment Costs, Software Safety, the use of Modular Open Systems, and a documented software architecture.
REFERENCES:

· Defense Acquisition Guidebook, Chapter 4, Section 4.1.3.1 - Software
https://acc.dau.mil/CommunityBrowser.aspx?id=638301
· Interim DoDI 5000.02, 26 Nov 2013, pp 9-11,
http://standards.ieee.org/findstds/standard/29148-2011.html
· IEEE Std. 15288-2008 (a.k.a. ISO/IEC 15288:2008) Standard for Systems and Software Engineering—System Life Cycle Processes
· Fairley, Richard. Managing and Leading Software Projects, ISBN: 978-0-470-29455-0, 2009
· A Multi-Level Approach to Addressing Systems Engineering Issues in Defense Programs NDIA Systems Engineering Division June 2009
· Nidiffer, Kenneth et al. Software Extension to the PMBOK Guide Fifth Edition, IEEE /PMI, ISBN: 978-1-62825-013-8, 2013
· Bass, Len et al, Software Architecture in Practice, 3rd Edition, SEI Series in Software Engineering, Addison Wesley, ISBN: 978-0-321-81573-6, 2012
· The Department of Defense (DoD) and Open Source Software, Oracle White Paper September 2013
· MITRE study, "Use of Free and Open Source Software (FOSS) in the U.S. Department of Defense", 2003
· Defense Acquisition Guidebook, Chapters 4, and 13, https://acc.dau.mil/CommunityBrowser.aspx?id=638301
· Joint Software Systems Safety Engineering Handbook, developed by the joint software systems safety engineering workgroup, Original published December 1999, Version 1.0, Published August 27, 2010
· National Research Council’s Aging of U.S. Air Force Aircraft report, please visit www.nap.edu/catalog.php?record_id=5917.
· Air Force Science Advisory Board’s Sustaining Aging Aircraft report, please visit www.airforce-magazine.com/SiteCollectionDocuments/Reports/2010/December%202010/Day29/Aging_TOR_2011.pdf.
· National Research Council’s Critical Code: Software Producibility for Defense report www.nap.edu/openbook.php?record_id=12979&page=R1.
· Seacord, Robert. Modernizing Legacy Systems, Addison Wesley, 2003, ISBN 0-321-11884-7
· MIL-HDBK-347 Mission-Critical Computer Resources, May 1990
CONTENT:
· Reference comments associated with MT2.2.
· Additional Comments:
· As noted in Defense Acquisition Guidebook, Chapter 4, Section: 4.1.3.1 – Software, the use of Modular Open Systems in the development life-cycle of a Software Intensive System leads to a more sustainable system." and, "A documented software architecture facilitates communication between stakeholders, captures early decisions about the high-level design, and allows reuse of design components between projects." and, "When adding software to a system, other factors must be considered to include: Software Dev. Plan, Post Deployment Software Support, Data protection, SW Assurance, SW Data Management & Technical Data rights, Software Reuse, SW Acquisition Costs, SW Sustainment Costs, Government & Industry Teaming, SW Safety, and SW Security.

	List of References

	· Interim DoDI 5000.02, 26 Nov 2013
· Defense Acquisition Guidebook, Chapters 4 and 11
· The other references, please see above

3

image1.emf
Sample Software WBSSample Software WBS

