

	Competency Paper

	Owner: Bob Skertic
Writer/Reviewer: Bob Skertic
	Date: 26 August 2016

	Competency 27: Software Development and Systems Engineering

	

	Competency Element(s):

	27.1 Applies the basic concepts of Systems Engineering to support the acquisition of fully integrated IT systems.

	27.2 Manages the interfaces between systems engineering, software development efforts and project management activities to provide the most effective government-wide process to acquire IT systems.

	Element Issues (DAU): List ambiguities, misunderstandings, etc. to help IT FIPT next time they update competencies

	NONE.

	Acquisition Workforce IT Qualification Standard Product and Tasks related to Product (DAU)

	27-1-1 Document and recommend the Information Technology requirements for incorporation in the Systems Engineering Plan (SEP).

1. Identify the technical and technical management processes that support the development of a fully integrated IT system.
2. Identify the Information Technology architecture products required.
3. Identify Information Technology certifications required.
4. Identify the engineering resources and management structure to support Information Technology aspects of the Systems and Software Engineering effort.
5. Document and recommend the Information Technology requirements for incorporation in the Systems Engineering Plan.

27-2-1 Document and recommend the interfaces required for incorporation in a program's Information Support Plan (ISP).
1.
1. Document the warfighting missions and/or business functions within the enterprise domains that will be the focus of the system.
2. Identify information needed to enable operational/functional capabilities for each warfighting mission and/or business function.
3. Identify current net-centric policies and procedures that apply.
4. Identify and develop required enterprise architecture requirements.
5. Document and recommend the interfaces required for incorporation in a program's Information Support Plan (ISP).

	AWQI References (DAU)

	· DoDI 5000.02
· DAG Chapter 4 and 7
· DoDI 5000.02
· DODI 4630.8
· CJCSI 6212
· DAG Chapter 4 and 7

NOTE: ISP is also reviewed by NSA, JIDC and DISA

	Assumptions (DAU)

	This competency includes the Software Development processes and best practices/lessons learned.

	TLO (Job Product or Service) (DAU; SME can make recommendations)
	BLOOM/COURSE

	TLO 27.1.1 Given a DoD IT acquisition program, evaluate the Software Engineers support to the Systems Engineer throughout the life-cycle of an IT product.
	BLOOM:

	ELO(s) with Major Takeaway (MT) (tasks which are required to build the product or service) (DAU)

	ELO 27.1.1.1 Identify the typical DoD Software topology used to describe an IT system.

MT 1.1. A typical System is made up of Sub-Systems, Software Items (SI) and Software Units (SU).
MT 1.2. Software Items (SI) are usually a single functional software application.
MT 1.3. Software Items (SI) are made up of Software Units (SU) (e.g., Microsoft Word, Excel, and PowerPoint).
MT 1.4. Software Units (SU) are made up of specific functions and procedures that produce the SI (e.g., Save, Print, Edit functions).
	BLOOM: 1
Level 1 Courses

	ELO 27.1.1.2: Recognize that Software Reuse must be thoroughly assessed and reassessed throughout each phase of software development.

MT2.1 12.5% Software Reuse Management Rule. After roughly 12.5 percent of code changes to the reused code, make your software developers reassess their original cost savings due to reuse to ensure it is still valid.

	

	
	

	***************** New Content***********************
	

	Software engineer should be thought of as a systems engineer with a specialist skill in software, rather than as a supplier of bounded software subsystem.
Systems Engineering Management Systems Engineering Management and the Relationship of Systems Engineering to Project Management and Software Engineering Ray Madachy Naval Postgraduate School ODASD System of Systems Engineering Collaborators Info Exchange July 19, 2011
	

	TLO (Job Product or Service) (DAU; SME can make recommendations)
	BLOOM/COURSE

	TLO xxx Given the description of a typical Systems Engineering Process, describe the key steps used in the design and development of a software-intensive system.
	IRM 101 V10 TLO and ELOs

	ELO(s) with Major Takeaway (MT) (tasks which are required to build the product or service) (DAU)
	

	ELO xxx.1 Identify steps in the Systems Engineering Process

MT3.1. The Systems Engineering Process is guides by eight Technical Processes and eight Technical Management Processes.
	

	ELO xxx.2 Explain how software requirements are determined

	

	ELO xxx.3 Recognize the software components of a Work Breakdown Structure (WBS)

MT 3.3 A well-organized, detailed WBS can assist in the effective allocation of resources, project budgeting, procurement management, scheduling, quality assurance, quality control, risk management, product delivery and service oriented management.
	

	ELO xxx.4 Define lifecycle reviews that can be used to help manage software development
·
· MT 3.4 Include software in technical reviews, with the addition of the Software Specification Review (SSR) as a precursor to the Preliminary Design Review (PDR) for software-intensive systems.
	

	ELO xxx.5 Explain Configuration Management (CM) and its role in software development

MT 3.5 Configuration Management needs to be a continuous process implemented at the beginning of a program and continuing until product retirement.
	

	
	

	
	

	TLO (Job Product or Service) (DAU; SME can make recommendations)
	BLOOM/COURSE

	Given an existing DoD IT/SIS program, students will demonstrate where and how Systems Engineering and architecture concepts and principles are applied to the acquisition of software intensive systems and IT infrastructure support in accordance with DoD policy, guidance and best practices.
	IRM 202 Lesson 7

IRM 202 Lesson 10

	ELO(s) with Major Takeaway (MT) (tasks which are required to build the product or service) (DAU)
	

	
	

	ELO xxx.1 Examine the impact of laws, policies, and regulations requiring the application of Enterprise Architecture concepts to DoD IT acquisition programs and projects.

	

	EO xxx.2 Explain how Enterprise Architecture can be used to describe the relationships between business processes and the technology infrastructure that supports and enables them

	

	ELO xxx.3 Describe the architectural relationship between weapons systems and their embedded information technology.

	

	ELO xxx.4 Explain how the DoD Architecture Framework provides the structure needed to develop integrated architectures in support of net-centric tenants and transformational processes

	

	ELO xxx.5 Assess the potential costs and benefits associated with the development and maintenance of a C4I Support Plan (C4ISP) and the use of Enterprise Architecture processes and products to identify and document capability gaps in support of the Joint Capabilities Integration and Development System (JCIDS).

	

	ELO xxx.6 Explain how the DoD IT Standards Registry (DISR) supports DoD Enterprise Architecture efforts and improve information system interoperability and integration.

	

	ELO xxx.7 Explain how Global Information Grid (GIG) policy and requirements impacts information technology acquisitions.

	

	ELO xxx.8 Track how the DoD information technology systems engineering process unfolds along the same timeline as the DoD Acquisition Management Framework.
	

	ELO xxx.9 Explain the nuances of the Systems Engineering process for IT systems compared to the process for developing and acquiring hardware-based systems.
	

	
	

	TLO (Job Product or Service) (DAU; SME can make recommendations)
	BLOOM/COURSE

	Given an IT acquisition scenario, critique systems engineering methodologies and processes to determine if systems development and program management decisions are executable.
	IRM 304 Lesson 7

	ELO(s) with Major Takeaway (MT) (tasks which are required to build the product or service) (DAU)
	

	ELO xxx.1 Assess the utility of system engineering technical processes and technical management processes as applied to an information systems acquisition.
	

	ELO xxx.2 Evaluate the relationship between systems engineering products and DoDAF architecture products.
	

	ELO xxx.3 Recommend the applicable statutes, policies, regulations, guidance, and best practices for incorporation into an IT acquisition.

	

	
	

	MAJOR TAKEAWAYS (MT) with REFERENCES and CONTENT (Subject Matter Expert (SME))

	MT 1.1. A typical System is made up of Sub-Systems, Software Items (SI) and Software Units (SU).
MT 1.2. Software Items (SI) are usually a single functional software application.
MT 1.3. Software Items (SI) are made up of Software Units (SU) (e.g., Microsoft Word, Excel, and PowerPoint).
MT 1.4. Software Units (SU) are made up of specific functions and procedures that produce the SI (e.g., Save, Print, Edit functions).

ISO/IEC 12207:1995 and ISO/IEC 12207:2008

MT2.1. 12.5% Software Reuse Management Rule. After roughly 12.5 percent of code changes to the reused code, make your software developers reassess their original cost savings due to reuse to ensure it is still valid.

If your software developers project a cost savings due to reuse and they begin to make changes and find out it will require more than their original estimates, you can still recover if you can catch the mistake early enough. Research shows that because of the large cost of understanding non-developed software you plan to reuse, at 12.5% changes of that code, you will have already spent 55% of what it would have cost you to develop those same requirements from scratch. You need a management check inserted in your processes to ensure the original software engineering cost savings are still accurate. Make your software developers stop and reassess whether continuing to do software reuse will provide the cost savings they originally projected.

At 12.5 percent reused code change, if your software engineers still have more reused code to change, it might be better to build the code from scratch? The earlier you can determine the resultant costs of software changes to the reused code, the more cost savings you can realize. Dr. Richard Selby studied almost 3,000 NASA software reuse programs and found that software engineers had to understand, assess, select, assimilate and test the targeted reuse code for its ability to meet the new program's requirements. If there are requirements that won't be met by the reused code, that capability must be developed. These gap requirements can drive the program beyond their projected cost savings. Software engineers must study the potential software to reuse and make return on investment (ROI) determinations. However, there are always things in software that arise unexpectedly and their original ROI could change. At 12.5 percent software modifications, make the engineers reassess their original ROI. If the software engineers believe that their original estimates of code reengineering were too low and now, additional major code changes are needed, it is not too late to regroup and build the code from scratch without incurring major additional costs.

NOTE: This formula on software reuse can also be applied to ERP software. You inherit a Reports, Interfaces, Conversions, Enhancements, Forms (RICEF) change cost by using a COTS Enterprise Resource Planning (ERP). You need to gain a level of understanding of the ERP SW capability, to understand the gap in requirements and to estimate where RICEF will be used. Based solely on anecdotal experience, RICEF growth follows a similar non-linear path.

Here is an example: During the requirements analysis phase, software engineers do an initial assessment and come up with a ROI that the Systems Engineer approves. This ROI is based on the requirements gap identified that includes identifying what interfaces are impacted.

Then, during the design phase they reassess their estimate again. Let's say they think they need to change 25 percent of the reuse code at this point. This includes the design for the gap requirements and interfaces that must be modified.

Then, when they actually start coding the modifications (code development phase), most of the time they don't stop and reassess; this is what causes most IT programs to bust budget. This Best Practice tells them to stop at 12.5 percent and do another reassessment. It is still not too late to start from scratch. But, if you do the math and look at Boehm's worst case projections, if they now project 51% changes to the reused code, you have now surpassed what it would have cost you to build from scratch and you now have no savings due to reuse. You now have a projected cost overrun. At the 12.5% code already modified point, the PM can ask for two assessments 1) New projected cost of reuse and, 2) How much would it cost to build from scratch, and make a final decision.

Here is some analysis from the USC Center for Software Engineering.

REFERENCE: COCOMO II Model Definition Manual, Version 2.0, Dr. Barry Boehm, et al, 1995 – 2000

COPYRIGHT NOTICE

This document is copyrighted, and all rights are reserved by the Center for Software Engineering at the University of Southern California (USC). Permission to make digital or hard copies of part of all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation of the first page. Abstracting with credit is permitted. To copy otherwise, to republish, to post on Internet servers, or to redistribute to lists requires prior specific permission and/or fee.

Copyright © 1995 – 2000 Center for Software Engineering, USC All rights reserved.

2.4.1 Nonlinear Reuse Effects
Analysis in [Selby 1988] of reuse costs across nearly three thousand reused modules in the NASA Software Engineering Laboratory indicates that the reuse cost function, relating the amount of modification of the reused code to the resulting cost to reuse, is nonlinear in two significant ways (see Figure 1). The effort required to reuse code does not start at zero. There is generally a cost of about 5% for assessing, selecting, and assimilating the reusable component.

[image:]

Figure 1. Non-Linear Reuse Effects

Figure 1 shows the results of the NASA analysis as blocks of relative cost. A dotted line is superimposed on the blocks of relative cost to show increasing cost as more of the reused code is modified. (The solid lines are labeled AAM for Adaptation Adjustment Modifier. AAM is explained in Equation 4.) It can be seen that small modifications in the reused product generate disproportionately large costs. This is primarily because of two factors: the cost of understanding the software to be modified, and the relative cost of checking module interfaces.

[Parikh-Zvegintzov 1983] contain data indicating that 47% of the effort in software maintenance involves understanding the software to be modified. Thus, as soon as one goes from unmodified (black-box) reuse to modified-software (white-box) reuse, one encounters this software understanding penalty. Also, [Gerlich-Denskat 1994] shows that, if one modifies k out of m software modules, the number of module interface checks required, N, is expressed in Equation 3.

N = k x (m – k) + k x ((k-1)/2)
Equation 3

Figure 2 shows this relation between the number of modules modified k and the resulting number, N, of module interface checks required for an example of m = 10 modules. In this example, modifying 20% (2 of 10) of the modules required revalidation of 38% (17 of 45) of the interfaces.

[bookmark: _GoBack]The shape of this curve is similar for other values of m. It indicates that there are nonlinear effects involved in the module interface checking which occurs during the design, code, integration, and test of modified software.
[image:]

MT3.1. The Systems Engineering Process is guides by eight Technical Processes and eight Technical Management Processes.
Reference: DAG Chapter 4

Table 4.3.1.T1. Systems Engineering Processes (DAG Chapter 4)
	Technical Management Processes
	Technical Processes

	Technical Planning (4.3.2)
	Stakeholder Requirements Definition (4.3.10)

	Decision Analysis (4.3.3)
	Requirements Analysis (4.3.11)

	Technical Assessment (4.3.4)
	Architecture Design (4.3.12)

	Requirements Management (4.3.5)
	Implementation (4.3.13)

	Risk Management (4.3.6)
	Integration (4.3.14)

	Configuration Management (4.3.7)
	Verification (4.3.15)

	Technical Data Management (4.3.8)
	Validation (4.3.16)

	Interface Management (4.3.9)
	Transition (4.3.17)

MT 3.3 A well-organized, detailed WBS can assist in the effective allocation of resources, project budgeting, procurement management, scheduling, quality assurance, quality control, risk management, product delivery and service oriented management.
Reference: DAG Chapter 4

MT 3.4 Include software in technical reviews, with the addition of the Software Specification Review (SSR) as a precursor to the Preliminary Design Review (PDR) for software-intensive systems.
Reference: DAG Chapter 4, DoDI 5000.02 January 7, 2015

[image:]

MT 3.5 Configuration Management needs to be a continuous process implemented at the beginning of a program and continuing until product retirement.
Reference: 16 CRITICAL SOFTWARE PRACTICESTM for Performance-based management

	List of References

	DoD Directive 5000.01, “The Defense Acquisition System,” November 20, 2007
DoDI 5000.02, “Operation of the Defense Acquisition System,” 7 January 2015
DoDI 8320.02, “Sharing Data, Information, and Information Technology (IT) Services in the Department of Defense,” August 5, 2013
DoDI 8330.01, “Interoperability of Information Technology (IT), Including National Security Systems (NSS),” May 21, 2014
DoDI 8500.01, “Cybersecurity,” March 14, 2014
DoDI 8510.01, “Risk Management Framework (RMF) for DoD Information Technology (IT),” 12 March 2014

image2.jpg
Reuse Consequences (Interfaces Tested)

50
45

" //r/‘
35

30
25

20
15 /
10 +—

5
0

——10 Modules

Number of Interfaces Tested (N)

1 2 3 4 5 6 7 8 9 10
Modules Modified (k = 10 Modules)
Figure 2

image3.jpg
Weapon System Development Life Cycle

'AOTR— Assessment of Operational Test
Resdiness

ASR — Aternative Systems Reviw
COR — Crical Design Review

EMD — Engineering and Manufacturing
Deveicpment

FCA — Functionsl Cnfiguration Audit
FD — Full Deployment

FOC —Full Operatonal Capabilty
FRP — FullRate Production

10C — Intial Operational Capabity

Engineering &
Manutacturing
Devsiopment

1sh—
MDD — Materel Development Decision
OTRR— Operational Test Readiness Review
PCA — Physical Configuration Audit

n-Serice Raview

PRR — production Resdiness Revien,
ST — Science and Techndogy

SRR —System Requirements Review
SFR — System Functional Review
SVR — System Verifcaton Review
TR Test Resdiness Review

Mandatory
technical reviews

Best practice
technical reviews
and audits

Test reviews (see

image1.jpg
Reuse Consequences

1.6
1.4 s AAM - Adaptation Adjustment Modifier
g / AAM means the total costs impacts as
a result of code modifications.
1.2
g 1 // /
o
2 os8 -+-Dr. Selby Data
& / —#—AAM Best Case
g 0.6
—+—AAM Worst Case
0.4
02 —
5
00454,
Q @9 05@ O P & @‘o é‘o he Copyright © 1995 —2000
N N o N3 Center for Software
Cost incurred i i
Relative Modification of Code Size Engineering, USC

Prior to actual
modifications

