	Competency Number
	Competency

	Software
Domain
	Competency Elements

	27

	Software Development and Systems Engineering
	
	

	
	
	
	27.1 Applies the basic concepts of Systems Engineering to support the acquisition of fully integrated IT systems.

	
	
	
	27.2 Manages the interfaces between systems engineering, software development efforts and project management activities to provide the most effective government-wide process to acquire IT systems.

	
	
	Mission Systems
	

	SUBTOPIC1

	Terms and Definitions

	
	

	
	MT1.1

	
	A typical System is made up of Sub-Systems, Software Items (SI) and Software Units (SU).

	
	Content
	
	An aggregation of software, such as a computer program or database that satisfies an end use function and is designated for purposes of specification, qualification, testing, interfacing, Configuration Management (CM), or other purposes. An SI is made up of Computer Software Units (CSUs).

	
	Reference
	
	Glossary of Defense Acquisition Acronyms and Terms, 15th Edition, December 2012.

	
	Content
	
	Under some software standards, the smallest subdivision of a Computer Software Configuration Item (CSCI) for the purposes of engineering management. CSUs are typically separately compilable pieces of code.

	
	Reference
	
	Glossary of Defense Acquisition Acronyms and Terms, 15th Edition, December 2012.

	
	MT1.2
	
	Software Items (SI) are usually a single functional software application.

	
	Content

	
	Terms and definitions.

	
	Reference
	
	ISO/IEC 12207:2008 Information technology -- Software life cycle processes

	
	MT1.3
	
	Software Items (SI) are made up of Software Units (SU) (e.g., Microsoft Word, Excel, PowerPoint).

	
	Content
	
	Terms and definitions.

	
	Reference
	
	ISO/IEC 12207:2008 Information technology -- Software life cycle processes

	
	MT 1.4
	
	Software Units (SU) are made up of specific functions and procedures that produce the SI (e.g., Save, Print, Edit functions).

	
	Content
	
	Terms and definitions.

	
	Reference
	
	ISO/IEC 12207:2008 Information technology -- Software life cycle processes

	SUBTOPIC2

	Software Reuse

	
	

	
	MT2.1

	
	12.5% Software Reuse Management Rule. After roughly 12.5 percent of code changes to the reused code, make your software developers reassess their original cost savings due to reuse to ensure it is still valid.

	
	Content

	
	Research shows that because of the large cost of understanding non-developed software you plan to reuse, at 12.5% changes of that code, you will have already spent 55% of what it would have cost you to develop those same requirements from scratch. You need a management check inserted in your processes to ensure the original software engineering cost savings are still accurate. Make your software developers stop and reassess whether continuing to do software reuse will provide the cost savings they originally projected.

	
	Reference

	
	REFERENCE: COCOMO II Model Definition Manual, Version 2.0, Dr. Barry Boehm, et al, 1995 – 2000

	SUBTOPIC3

	Systems Engineering Process
	
	

	
	MT3.1

	
	The Systems Engineering Process is guides by eight Technical Processes and eight Technical Management Processes.

	
	Content

	
	The practice of systems engineering (SE) is composed of 16 processes: eight technical processes and eight technical management processes as listed in Figure 4.1.F2. and described in DAG section 4.3. Systems Engineering Processes. These 16 processes provide a structured approach to increasing the technical maturity of a system and increasing the likelihood that the capability being developed balances mission performance with cost, schedule, risk, and design constraints.

	
	Reference1

	
	DAG Chapter 4, Table 4.3.1.T1. Systems Engineering Processes (DAG Chapter 4)

	SUBTOPIC4
	Work Breakdown Structure
	
	

	
	MT 4.1
	
	A detailed WBS will support the systems engineering process

	
	Content
	
	A well-organized, detailed WBS can assist key personnel in the effective allocation of resources, project budgeting, procurement management, scheduling, quality assurance, quality control, risk management, product delivery and service oriented management.

	
	Reference
	
	Process Centric Business Case Analysis for Easing Software Project Management Challenges, JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

	SUBTOPIC5
	Technical Reviews
	
	

	
	MT5.1
	
	Include software in technical reviews for software-intensive systems.

	
	Content
	
	Include software in technical reviews, with the addition of the Software Specification Review (SSR) as a precursor to the Preliminary Design Review (PDR) for software-intensive systems.

	
	Reference
	
	Defense Acquisition Guidebook, Chapter 4 -- Systems Engineering

	SUBTOPIC6
	Software Configuration Management
	
	

	
	MT6.1
	
	Software Configuration Management needs to be a continuous process.

	
	Content
	
	Configuration Management plans need to be developed by the acquirer and the developer to facilitate management control of information they own. The CM procedures of the acquirer serve as the requirements for the CM plan that describes and documents how the developer will implement a single CM process. This plan should control formal baselines and will include engineering information, reports, analysis information, test information, user information, and any other information approved for use or shared within the program. The CM process should include developer-controlled and -developed baselines as well as acquirer-controlled baselines. It should also include release procedures for all classes of products under control, means for identification, change control procedures, status of products, and reviews and audits of information under CM control. The CM plan needs to be consistent with other plans and procedures used by the project.

	
	Reference
	
	Software Program Managers Network, 16 Critical Practices, V5.2,

	
	
	
	

	
	
	C4ISR
	

	SUBTOPIC7
	Stakeholder Requirements Definition
	
	

	
	MT 7.1
	
	Define requirements in terms of mission threads and services.

	
	Content
	
	A mission thread is a sequence of end-to-end activities and events that takes place to accomplish the execution of an SoS capability. The mission thread takes place in the context defined by a vignette, which is a short story about environment. We identify three basic types of mission threads: 1) operational, 2) development, and 3) sustainment.

	
	Reference
	
	Mission Thread Workshop, Software Engineering Institute, Carnegie Mellon University

	
	MT 7.2
	
	System of Systems (SoS) systems engineers must be able to function in an environment where the SoS manager does not control all of the systems that impact the SoS capabilities and where the stakeholders have interests beyond the SoS objectives.

	
	Content
	
	A typical strategy for providing end-to-end support for new capability needs is to add functionality to assets already in the inventory. In most cases, these systems continue to be used for their original requirements. Consequently, the ownership or management of these systems remains unchanged, and they continue to evolve based on their own development and requirements processes and independent funding. The resulting dual levels of management, objectives, and funding create management challenges for both the SoS and the systems, especially when their objectives are not well aligned. In turn, these management challenges pose technical challenges for systems engineers, especially those working on the SoS.

	
	Reference
	
	Systems Engineering Guide (Collected wisdom from MITRE’s systems engineering experts), The MITRE Corporation, 2014

	
	
	Defense Business Systems
	

	SUBTOPIC 4
	System Architecture and Development
	
	

	
	MT 4.1
	
	An architecture that allows efficient evolution of a system is a strategic asset for COTS-based systems—it is the only thing the project owns.

	
	Content
	
	The marketplace’s evolutionary nature strongly affects the COTS-based system architecture and design, which must now withstand years if not decades of change. An architecture that allows efficient evolution of a system is a strategic asset for COTS-based systems—it is the only thing the project owns. Development of such an architecture must occur in concert with the evolving requirements and product decisions, creating trade-off situations custom development will rarely encounter

	
	Reference
	
	Developing New Processes for COTS Based Systems, IEEE SOFTWARE July/August 2000, p 48.

	
	MT 4.2
	
	COTS-based processes differ considerably from traditional software development.

	
	Content
	
	Failure to recognize this by attempting to use traditional processes in a COTS project could be a factor in overall project success (or failure). It also could give developers leeway to loosen their processes, as the only processes they have are clearly inappropriate for the project at hand. On the other hand, new processes and activities have to be de- fined and given guidance.

	
	Reference
	
	COTS-based software development: Processes and open issues, The Journal of Systems and Software 61 (2002) 189–199.

	
	
	Infrastructure (e.g., Cloud)
	

	SUBTOPIC 5
	Systems Development
	
	

	
	MT 5.1
	
	Identify glueware and integration requirements upfront.

	
	Content
	
	This step, although it is the activity that most closely resembles design in a traditional development process, is less a problem of decomposition (finding the right decomposition that best satisfies the requirements) and more a problem of composition and integration (finding the best way to integrate COTS that satisfies the requirements). That is, it is more of a bottom-up process, where developers attempt to put together COTS products like building blocks, until all requirements are met. As a result, gaps are identified where the chosen con- figuration of COTS products leaves some requirements unfulfilled. At the same time, all interfaces are identified.

	
	Reference
	
	COTS-based software development: Processes and open issues, The Journal of Systems and Software 61 (2002) 189–199.

	
	MT 5.2
	
	When assessing COTS alternatives, it is necessary to determine what, if any, performance and environmental degree of reliability and maintainability validation and testing are required.

	
	Content
	
	There are a number of COTS equipment R&M validation decision factors based on criticality and complexity that must be assessed. The goal is not to "overtest" or "undertest" COTS equipment. The goal is to take advantage of existing testing data to reduce the overall verification and validation cost.

	
	Reference
	
	Risk-Based COTS Systems Engineering Assesment Model: A Systems Engineering Management Tool and Assessment Methodology to Cope with the Risk of Commercial Off-the-Shelf [COTS] Technology Insertion During the System Life Cycle, Defense Technical Information Center Compilation Part Notice ADPO10964.

	
	
	Cybersecurity
	

	SUBTOPIC 6

	Systems Development
	
	

	
	MT6.1

	
	Leverage or introduce virtualization as a foundation to implement techniques for isolation, non-persistence, replication, reconstitution, and scaling.

	
	Content
	
	Doing so will support capabilities to constrain attacks and damage propagation, improve availability, and provide agility to create, deploy, and move critical capabilities at will (moving target defense) if the system is under attack. ([6], pp. 8, 10, 11–14)

	
	Reference
	
	Systems Engineering Guide (Collected wisdom from MITRE’s systems engineering experts), The MITRE Corporation, 2014

	
	MT6.2

	
	Non-persistence techniques can be applied for access to data, applications, and connectivity when continuous access is nonessential.

	
	Content
	
	They can be used to reduce the exposure of the data and applications, as well as the opportunity for the adversary to analyze our vulnerabilities or gain a stronghold and maintain a persistent presence.

	
	Reference
	
	Systems Engineering Guide (Collected wisdom from MITRE’s systems engineering experts), The MITRE Corporation, 2014

	
	MT6.3

	
	Segregate components of dubious pedigree from trusted ones to reduce the attack surface, simplify systems and interfaces, and limit the damage and spread of exploits, when they occur.

	
	Content
	
	Separation requirements should implement the principle of least privilege and separate critical from non-critical mission functions and data. Partitioning supports the distribution and placement of highly specialized sensors that can improve situational awareness and better detect behavioral anomalies ([6], pp. 3–6, 8–9, 11–13).

	
	Reference
	
	Systems Engineering Guide (Collected wisdom from MITRE’s systems engineering experts), The MITRE Corporation, 2014

	
	MT6.4
	
	Beef up detection, analysis, correlation, and forensics tools and processes.

	
	Content
	
	Improve integrated SA understanding by improving sensor data collection, analytics for security and mission-critical capabilities’ health (i.e., better detect degradations, faults, intrusions, etc.), and visualization techniques. Baseline normal critical processing and user behavior, and focus on anomaly detection within this context. Use forensics to drive evolution of CND and operations. ([6], pp. 4, 6, 16)

	
	Reference
	
	Systems Engineering Guide (Collected wisdom from MITRE’s systems engineering experts), The MITRE Corporation, 2014

	
	
	Agile
	

	SUBTOPIC 7
	
	
	

	
	MT 7.1
	
	Understand the difference between “Agile Systems Engineering” and the systems engineering of an “Agile System”

	
	Content
	
	In the first case the emphasis is on carefully exploring the space of design alternatives and to delay the freeze point as long as possible as new information becomes available during product development. In the second case we are interested in systems that can respond to changed requirements after initial fielding of the system.

	
	Reference
	
	Agile SYSTEMS ENGINEERING versus AGILE SYSTEMS engineering, Copyright © 2005 byR. Haberfellner and O. de Weck. Published and used by INCOSE with permission.

	
	MT7.2
	
	[bookmark: _GoBack]Agile Systems Engineering must be applied to Software Intensive Systems (SIS).

	

	Content
	
	The development of an agile system engineering framework is required to enhance the overall effectiveness of the SIS, development process. Key interfaces also need to be identified from the system area to the business and software areas enabling seamless communication between adjacent areas.

	
	Reference
	
	An Agile Systems Engineering Process The Missing Link?, Matthew R. Kennedy, DAU David A. Umphress, Ph.D., Auburn University, CrossTalk—May/June 2011

	
	
	
	

