Continuous Learning Module (CLE/CLM) 078 – Information Technology Acquisition for the Program Office Workforce Outline

Module Titles
Module 1 – Taxonomy and Governance (Bob Ramsey)
Module 2 – Acquisition & Sustainment Strategies
Module 3 – Requirements
Module 4 – Cost Estimation, Budgeting and Contracting
Module 5 – Software Systems Engineering
Module 6 – Software Design & Development
Module 7 – Software Test and Evaluation
Module 8 – Deployment and Support
Module 9 – Exam

Module Topics
Module 1 – Taxonomy and Governance (35-40 minutes)
1. Department of Defense Software Systems
a. Platform IT System
b. Defense Business Systems (DBS)
c. Cybersecurity Systems
d. C4ISR, IT Services, Modeling and Simulation (CIM)
National Security Systems (i.e., Weapon Systems, C4ISR, Cyber, tactical AIS)
Automated Information Systems (i.e., non-tactical AIS, DBS, M&S, Cybersecurity, IT Services)
From RQM 110:
“Weapon Systems: Items that can be used directly by the Armed Forces to carry out combat missions. Includes weapons; command, control, communications, computer, surveillance, intelligence and reconnaissance (C4ISR) systems, tactical trucks, trailers, generators, etc. Does not include non-tactical automated information systems.
Automated Information Systems: A system of computer hardware, computer software, data or telecommunications that performs functions such as collecting, processing, storing, transmitting and displaying information. Includes Defense Business Systems. Excluded are computer resources, both hardware and software, that are physically part of and developed specifically for a particular weapons systems; used for highly sensitive classified programs (as determined by the SECDEF); or used for other highly sensitive information technology programs (as determined by the DoD CIO).
Defense Business System: A DBS is an information system, other than a National Security System, operated by, for, or on behalf of the DoD, including financial systems, management information systems, financial data feeder systems, and the information technology and cybersecurity infrastructure used to support business activities, such as contracting, pay and personnel management systems, some logistics systems, financial planning and budgeting, installations management and human resource management.”
2. Statutory, Regulatory, Guidance, Policy, Directives, Instructions
ELO 1.1.1.1 Given a list of U.S. Laws and Federal Government directives, summarize four key points affecting acquisition of IT systems.

MT1.1. The President can make Executive decisions that have the power of U.S. law that effect DoD IT policy. For example, Executive Order (E.O.) 13636 on Cybersecurity.

MT1.2. The Office of Management and Budget (OMB) exercises direct spending control over DoD IT acquisitions via OMB Circular A-11 and OMB Circular A-130.

MT1.3. The main IT-related U.S. Laws that impact DoD IT acquisition are Title 5 on Federal Government and Agency Performance Plans; Title 10 on the management of Major Automated Information System (MAIS) Programs; Title 29 on the management of Electronic Information Technology; Title 40 on the management and acquisition of Information Technology (Clinger-Cohen Act (CCA); Title 44 on Federal Information Security (Cybersecurity)

MT1.4. The key law directing the management of DoD IT acquisition is Title 40, U.S. Code, Subtitle III, Information Technology Management (Clinger-Cohen Act (CCA)).

MT1.5. The annual National Defense Authorization Act (NDAA) enacts laws that directly impact DoD IT acquisition.
a. Definitions
b. IT Examples
i. National Defense Authorization Act
ii. Clinger Cohen Act
ELO 1.1.1.5 Discuss the impact of Title 40/CCA on acquisition of Information Technology (IT).

MT5.1. Compliance with Title 40/CCA is STATUTORY for all programs that acquire IT.
DoDI 5000.02 provides requirements for compliance with Title 40, United States Code – Division E of the Clinger-Cohen Act (CCA) and Chapter 144a of Title 10, USC, Major Automated Information Systems (MAIS), for all Information Technology (IT) and National Security Systems (NSS) investments.

MT5.2. Compliance means satisfying all eleven requirements required by CCA Compliance table found in DoDI 5000.02.
The Program Manager documents actions to comply with Title 40/CCA using the Compliance Table in Enclosure 1 of DoDI 5000.02. Compliance is not required to be spelled out in separate documents, but is integrated with other required program documentation.

MT6.1. All programs must gain CCA Compliance approval from their Milestone Decision Authority (MDA) to exit each program milestone.

iii. OMB Reporting
ELO 1.1.1.7 Document the requirements for project/program reporting listed in OMB Circular A-11 Section 55.

MT7.1. OMB Circular A-11, Section 55 documents each Program’s IT mission investments via the “Major IT Business Case” and “Major IT Business Case Detail” reports (used to be called Exhibit 300). Also, Section 55 documents the enterprise’s IT mission investments via the “Agency IT Portfolio Summary” and “Agency Cloud Spending Summary” reports (used to be called Exhibit 53) which are rollups of their subordinate program’s “Major IT Business Case” and “Major IT Business Case Detail” reports.
iv. “Cloud First”
ELO 31.1.1.3 Describe the laws, policies and standards that apply to Cloud Computing

MT 3.1 OMB published the “Federal Cloud Computing Strategy” on February 8, 2011, that states “To harness the benefits of cloud computing, we have instituted a Cloud First policy. This policy is intended to accelerate the pace at which the government will realize the value of cloud computing by requiring agencies to evaluate safe, secure cloud computing options before making any new investments.”

MT 3.2 On December 15, 2014, the DoD CIO issued a memo entitled, “Updated Guidance on the Acquisition and Use of Commercial Cloud Computing Services” to clarify DoD guidance when acquiring commercial cloud services. The DoD CIO also released a Cloud Computing Security Requirements Guide (SRG) for cloud service providers to comply with when providing the DoD with cloud services.
3. JCIDS, PPBE, and DAS
ELO 1.1.1.2 Identify DoD key information and software policy and regulations.

MT 2.1. DoDD 5000.01 and DoDI 5000.02 are the main, mandatory DoD acquisition policies and procedures that include IT acquisition and other IT-related requirements like an Enterprise or Joint Integrated Architecture.

MT2.2. DoDD 5144.02 identifies the DoD CIO responsibilities.

MT2.3. The DoD (Directives and Instructions) 8000 Series covers all INFORMATION MANAGEMENT AND INFORMATION TECHNOLOGY policy and procedures.

MT2.4. The DoD 8300 series defines Information Infrastructure Design and Engineering.

MT2.5. DoDD 8320.02 defines the DoD Data Strategy. DoDI 8330.01 defines the requirements for Interoperability of Information Technology (IT), Including National Security Systems (NSS).

MT2.6. National Security Systems (NSS) are all systems used to defend the United States (Weapons systems, C4ISR Systems, Combat Support Systems to include Information Technology and Telecommunication Systems) as defined in Title 44, Section 3542(b). NSS does not include routine administrative business systems.

MT2.7. The DoD 8500 series dictates Information Infrastructure Protection and Safeguards (e.g., DoDI 8500.01 on Cybersecurity and DoDI 8510.01 on Risk Management Framework (RMF)).

MT2.8. CJCSI 3170 and JCIDS Manual defines the process to collect and manage IT system requirements.

Module 2 – Acquisition & Sustainment Strategies (30 minutes)
1. Product-tailored Acquisition Models
a. Describe each model and an example of PIT/DBS/Cyber/CIM for each
ELO 2.1.1.1 Define Acquisition Strategy.

MT1.1. The Acquisition Strategy is a business and technical management approach designed to achieve program objectives within the resource constraints imposed. It is the integrated framework for planning, directing, contracting for, and managing the entire life-cycle of an acquisition program.
ELO 2.1.1.2 Recognize the purpose for an Acquisition Strategy.
MT2.1. Acquisition Strategy is the overall roadmap that guides how the desired capability will be developed through all life-cycle phases of acquisition.
ELO 2.1.1.3 Given Single-Step and Evolutionary Acquisition strategies, match the strategy to their correct definition.

MT3.1. Single-Step occurs when the capability is clearly defined, all requirements, including software requirements are known, technology needed is mature, there is no demand for early, partial deployment of the capability and, the capability has a deployed, fielded precedent that works successfully.
MT3.2. Evolutionary Acquisition occurs when the capability is not fully defined or the stakeholders have not reached consensus on the capability definition, all requirements, including software requirements are not known but we have enough for increment one, technology is not fully mature but we have mature enough technology for increment one, there might be a demand for a partial capability and there are no successful precedented systems fielded.

ELO 2.1.1.4 Given an Acquisition strategy, match the strategy to their correct definition.

MT4.1. There are four (4) base acquisition strategy models that are base or foundational examples of what could be planned.

MT4.2. All acquisition strategy models can be tailored to meet the needs of each unique program.

MT4.3. Base Model 1 is Hardware Intensive, the classic DoD model for weapons systems. This model represents one large increment to build hardware; no software included. This model is not realistic to today’s modern weapons systems which include software functionality.

MT4.4. Base Model 2 is Software Intensive. Software Intensive means that most of the functionality is instantiated using software. This is more realistic of weapons and C4ISR military systems developed today. This model is dominated by the development of complex, usually defense unique, software that is fielded in builds. Configuration management between hardware and software is crucial to the success of each software build.

MT4.5. Base Model 3 is a software-based model but is dominated by the rapid delivery of capability through several limited deployments. This model is more of a COTS-based model used for Defense Business Systems (DBS).

MT4.6. Base Model 4 is a model that applies when schedule considerations dominate over cost and technical risk considerations. This model compresses or eliminates phases of the process and accepts the potential for inefficiencies in order to achieve a deployed capability on a compressed schedule.

Need Model 5 & 6 here.
MT24. Understand the requirements ramifications of each DoD5000.02 Defense Acquisition Program Model. The IT acquisition manager needs to know that these are models and, as models, they can be adapted to meet the needs of the acquisition. Provided below is a discussion of each model and associated requirements ramifications.
Model 1: Hardware Intensive Program
1. Classic model that has existed in some form in all previous editions
2. Hardware-intensive development such as a major weapon systems platform
3. Starting point for most weapon systems; however, almost always contain software development resulting in some form of hybrid model
4. Requirements process baseline

Model 2: Defense Unique Software Intensive Program
1. Dominated by the need to develop a complex, usually defense-unique, software program that will not be deployed until several software builds are completed
2. Key feature is planned software builds – series of testable, integrated capability subsets – which together with clearly defined decision criteria ensure adequate progress before fully committing to subsequent builds
3. Examples: military-unique command-and-control systems and upgrades to combat systems on weapon systems such as surface combatants and tactical aircraft
4. Requirements process similar to Model 1

Model 3: Incrementally Fielded Software Intensive Program
1. Rapid delivery of capability using several limited fieldings in lieu of single Milestone B and C and single full deployment
2. Several builds and fieldings typically needed to satisfy approved requirements for increment
3. Applicable for COTS software, such as commercial business systems with multiple modular capabilities, are adapted for DoD
4. Requirements process really does not much differ except in its implementation of incremental capabilities

Model 4: Accelerated Acquisition Program
1. Applies when schedule dominates over cost and technical risk considerations
2. Compresses or eliminates phases, accepting potential for inefficiencies in order to achieve deployed capability on a compressed schedule
3. Model shows one example of tailoring with many others possible for products that must be developed and acquired ASAP, usually motivated by a potential adversary achieving technological surprise and featuring greater acceptance of program risk
4. The model accepts changes in the requirements process that are indeterminate.

Model 5: Hybrid Program A (Hardware Dominant)
1. Depicts how a major weapons system combines hardware development as a basic structure with software-reliant development occurring simultaneously
2. Design, fabrication, and testing of physical prototypes may determine overall schedule, decision points, and milestones, but software development often dictates the pace of program execution and requires tight integration
3. Builds should lead to the full capability needed to satisfy requirements and IOC
4. Milestone B/C decisions include software functional capability development maturity criteria as well as demonstrated technical performance exit criteria
5. Requirements process really does not much differ except in its implementation of incremental capabilities

Model 6: Hybrid Program B (Software Dominant)
1. Depicts how software-reliant product development can include a mix of incrementally fielded software products or releases that include intermediate software builds
2. Risk Management: Highly integrated, complex software and development risks must be managed throughout the life cycle, with special interest dedicated to decision points and milestones
3. Requirements process really does not much differ except in its implementation of incremental capabilities

From COL Flander’s “Dirty Dozen + 4” Twelve Tips for DoD SW PMs:
Planning Release 1 … “smallest fieldable amount with tangible ROI that the customer will agree to"
· Should demonstrate that the system will work end-2-end … or a logical chunk of it that can be built upon
· Pick the easiest requirements that have the best quality data (… because you are smart, not lazy)
· Fight for this! The customer wants it all in the first release … every time
· Gives success earlier; validates assumptions; buys you time to further analyze the harder things
Planning Release 2 thru “n” … use a model
· You MUST know: the interfaces required, the quality of the data required, the hardware required, and the software required ... with costs & estimates of complexity for each
· Create a model based on the variables above … use it for estimates going forward; continuously refine
· If budget cuts take everything except the release 1 money; your program is still a success!

2. Post Deployment Software Support
a. Product Support Business Case Analysis/IT BCA
ELO 4.1.1.1 Define Product Support BCA.

MT1.1. The Product Support Business Case Analysis (BCA) is a structured methodology and document that aids decision making by identifying and comparing alternatives by examining the mission and business impacts (both financial and non-financial), risks, and sensitivities.

ELO 4.1.1.2 Identify the purpose for a Product Support BCA.

MT2.1. The main purpose of Product Support BCA is to provide a formal, structured process used as a tool to assess business improvement alternatives.

MT2.2. Another purpose of the Product Support BCA is to provide an enterprise-wide, holistic analysis of alternatives that forms the basis of understanding for a decision-maker.

MT2.3. One principle application of the Product Support BCA guidebook is to assist the Product Support Manager (PSM) in identifying the product support strategy that achieves the optimal balance between Warfighter capabilities and affordability.

MT2.4. Private sector companies use BCAs to determine the feasibility of developing new products or entering new markets. The private sector also uses BCAs to identify functional alternatives and present economical, technical, and other arguments for carrying out those alternatives to achieve stated business objectives.

MT2.5. The Software Engineer must ensure that the warfighter desired outcomes and requirements are obtained. This ensures that the alternative we select provides the best value software solution and minimizes our rework.

b. Lifecycle Sustainment Strategies and Planning
ELO 4.1.1.3 Identify Department of Defense (DoD) Product Support BCA policy and guidance.

MT3.1. The Product Support Business Case Analysis (BCA) is a mandatory ANNEX to the mandatory Life-Cycle Sustainment Plan (LCSP) in DoDI 5000.02, “Operation of the Defense Acquisition System,” 7 January 2015

Technical data is critical in executing a PM’s life-cycle management responsibilities. Affordable product support and the ability to maximize competition require that the PM be involved in the development and execution of the program’s approach to intellectual property rights identified with the Technical Data Rights Strategy. A program’s Acquisition Strategy must be “forward thinking” with respect to intellectual property. Unless data rights considerations are considered up-front when developing an acquisition strategy, critical data and software may not be specified for delivery, rendering it unavailable (or unaffordable) years later for use on a program during its sustainment phase. For these reasons sustainment strategies need to be considered early on in a program’s life cycle and revisited in each phase of the evolutionary acquisition lifecycle.
Only under very unique circumstances does the Government acquire title to or ownership of technical data or computer software developed under DoD contracts – even if the Government funded 100% of the development. Instead, the Government acquires a license to use, release, or disclose that technical data or computer software to persons who are not Government employees. Therefore, the DoD negotiates over license rights and not ownership of technical data or computer software to be delivered under a contract.
It is important to note that Data Rights is a shorthand way to refer to the Government's license rights in two major categories of valuable intellectual property:
· Technical Data includes any recorded information of a scientific or technical nature (e.g., product design or maintenance data, computer databases, and computer software documentation).
· Computer Software includes executable code, source code, code listings, design details, processes, flow charts, and related material.
MT3.2. The Defense Acquisition Guidebook (DAG) provides guidance on how to produce a Product Support Business Case Analysis
c. Identify various LCSS for PIT/DBS/Cyber/CIM
ELO 4.1.1.5 Identify the seven (7) major tasks the IT Professional provides to building a Product Support BCA.

MT5.1. The Software Engineer supports the Systems Engineer in seven (7) ways, by ensuring that:

1) Software Engineering Environment. When computing the software cost estimate of each product alternative, it is important to understand the software development environment.

2) Open Systems Architecture (OSA). Adherence to OSA principles directly impacts the supportability of each product during the Operations and Support (O&S) phase.

3) Intellectual Property (IP) Rights. Ease of support during the O&S phase is directly impacted by whether the government has the rights to update the software in the project’s architecture.

4) Sharing Data, Information, and Information Technology (IT) Services. Data, information, and IT services will be made visible, accessible, understandable, trusted, and interoperable throughout their lifecycles for all authorized users. Data governance rules must be clear for data element maintenance purposes.

NOTE:
-Data means data elements/schema; data is usually metadata tagged.
-Information means any communication or representation of knowledge such as facts, data, or opinions in any medium or form, including textual, numerical, graphic, cartographic, narrative, or audiovisual forms.
-IT services means an IT capability designed to provide awareness of, access to, and delivery of data or information made available for consumption by one or more users. Users can be an individual, organization, or machine.
DoD Directive 8000.01, “Management of the Department of Defense Information Enterprise,” February 10, 2009

5) Software Development Environment. The product support software development must replicate the original software development environment so the software applications can be improved easily

6) Software Security Architecture. The solution architecture for security should have been built in from the original design of each software item for ease of product support.

7) Software Assurance. The developers of the original software code must use secure coding practices to ensure ease of support during the O&S phase.
ELO 4.1.1.7 Identify three Information Technology (IT) areas that impact the best value benefits analysis of the Product Support BCA.

MT7.1. Software Architecture: The product is not best value if it does not abide by the OSA principles that ensure the software is functionally modular and open for ease of maintenance and modernization. And, the software architecture must include the security architecture (build security in from the beginning).

MT7.2. Supply Chain Management Strategy: The product is not best value if it has been developed in an unknown environment with a high risk of security vulnerabilities. Software Assurance considerations include secure-coding of the code and code analysis of code written by non-DoD developers.

MT7.3. Intellectual Property (IP) Rights. Ease of support during the O&S phase is directly impacted by whether the government has the rights to update the software in the project’s architecture. If the government has limited rights to any software, it can be very costly to support that software. Data escrow is a way to pay less money for obtaining the vendor’s software if the contractor goes bankrupt.

Module 3 – Requirements (30 minutes)
1. JCIDS
Regardless of life cycle cost, Information Systems, other than a national security system, operated by, for, or on behalf of the DoD, including financial systems, mixed systems, financial feeder systems, and information technology and cybersecurity infrastructures, are Defense Business Systems (DBS). DBS support business activities such as acquisition, financial management, logistics, strategic planning and budgeting, installations and environment, and human resource management, and generally are validated by the Investment Review Board (IRB). The DBS requirements process is different from the traditional national security system although when a DBS requires Joint Staff oversight, the DBS Problem Statement will be used in lieu of the typical capability requirement documents used in JCIDS staffing and validation.
a. ICD/CDD/CPD
ICD:
For all capability requirements that cannot be met using non-materiel approaches, the Initial Capabilities Document (ICD) will make specific recommendations on the type of materiel approach preferred to close each capability gap:
· Evolution of a previously fielded capability solutions(s) with significant capability improvement, including development and fielding of improved IS, improved components or subsystems to address high obsolescence rates, or other upgrades and product improvements.
· Replacement or recapitalization of a previously fielded capability solution(s) with significant capability improvement.
· Introduction of a transformational capability solution(s) that differ significantly in form, function, and operation from previously fielded capability solution(s).
CDD/CPD:
The CDD and CPD are the Sponsor's primary means of proposing Key Performance Parameters (KPPs), Key System Attributes (KSAs), Additional Performance Attributes (APAs), and other attributes associated with a materiel solution intended to wholly or partially satisfy validated capability requirements, and close or mitigate associated capability gaps. The CDD and CPD will also discuss Doctrine, Organization, Training, materiel, Leadership and Education, Facilities, and Policy (DOTmLPF-P) considerations that enable the implementation of the materiel solution.
b. IS ICD/CDD
IS-ICD:
For capability requirements likely to be addressed by IS solutions – software development, and off-the-shelf hardware, if required – an IS-ICD variant should be considered.
The IS-ICD is a variant of the regular ICD, implementing the “IT Box” model. IS-ICDs streamline the requirements process relative to IS efforts by delegating requirements oversight and document formats for subsequent documents to an oversight panel identified in the IT Box. This provides IS programs greater flexibility to incorporate evolving technologies and achieve faster responses from requirement validation processes.
IS-ICDs are appropriate for
· The procurement or modification of Government off- the-shelf/commercial off- the-shelf (GOTS/COTS) IS products from domestic or international sources, or the development of dual-use technologies.
· The additional production or modification of previously developed U.S. and/or allied/partner-nation/ other US government agency/department IS products.
· Development, integration, and acquisition of customized application software, including commercial IS capability solutions with integrated, DOD-specific performance characteristics/standards.
· Approaches where the capability solution involves research, development, and/or acquisition of applications systems software, and the projected life cycle costs exceed $15 million.

All hardware associated with an IS-ICD must be COTS/GOTS. Hardware modifications are restricted to those necessary for system integration and enhancements to meet capability requirements specified in the IS-ICD, and hardware refresh due to obsolescence.

For capability requirements likely to be addressed by a mix of JS and non-JS solutions, sponsors must use the regular JCD format and consider an IS- COD after JCD validation to streamline the IS portion of solution development.

IS-ICDs are NOT appropriate for:
· Software embedded as a subset of a capability solution developed under other validated capability requirement documents. In this case, the software requirements are validated as part of the overall capability solution.
· Software requiring a host platform, such as a manned or unmanned vehicle, which does not yet have validated capability requirement documents (lCD, CDD or CPD). In this case, the software requirements can be included in the capability requirements of the host platform, or as a separate IS-lCD submitted after validation of the host platform capability requirement documents.
· Increases in quantities of previously fielded IS without modification, which are not addressed by an IT Box. These increased quantities may be addressed by a DCR. Increases in quantity which remain within the scope of a previously validated IT Box, may be accomplished without revalidation.
· Requirements for Defense Business System (DBS).

In cases where the potential for use of the IT-Box construct is unclear or in dispute, the Joint Staff Gatekeeper, in consultation with the validation authority, will determine whether or not an lCD or IS-lCD will be used.
IS-CDD:
The IS-CDD is focused on facilitating more efficient and timely software development efforts, and is not appropriate for hardware development efforts or capturing capability requirements which span a broad scope of combined hardware, software, and/ or DOTmLPF-P efforts.
The IS-CDD is a variant of the regular CDD, implementing the "IT Box" model first implemented by the IS-lCD. The IT Box for a CDD is slightly different than for an lCD, as indicated here. IS-CDDs streamline the requirements process relative to IS efforts by delegating requirements oversight for subsequent documents as identified in the IS-CDD.
[image:]

IS-CDDs are appropriate in the same situations where the IS-lCD is appropriate. IS-CDDs are NOT appropriate in the same situations where the IS-lCD is not appropriate.
Generally, an IS-lCD should be used when implementing the IT-Box model, but IS-CDDs may be used in some cases, such as:
· Cases where a validated ICD contains capability requirements which can be addressed by a combination of IS and non-IS capability solutions and the IT Box construct is applicable to the IS portion of the capability solution(s).
· For MDAP and MAIS programs to comply with statutory requirements for a CDD while allowing for other flexibilities of the IT Box model.
· Cases where a validated CDD was generated before the IT-Box construct was introduced, and the Sponsor wants to revalidate under the IT-Box construct.

The IS-CDD format is used, when applicable, for capability requirement documents with JSDs of JROC Interest and JCB Interest. Sponsors are encouraged to use and validate IS-CDDs for capability requirement documents with JSDs of Joint Integration or Joint Information.
Differences between an IS-CDD and a CDD:
The body of an IS-CDD differs from a regular CDD in three sections:
· Program Summary -In addition to CDD content for this section, the remaining sides of the IT Box are briefly discussed, using KPPs on the left side of the box, instead of the operational attributes/ initial values used in the IT Box for an IS-lCD. Also, in the Program Summary, the proposed flag-level oversight body, Chair, and organizations represented must be identified.
· Development KPPs, KSAs, and APAs -In addition to CDD content for this section, the KPPs, KSAs, and APAs may be quantified in terms of initial performance values rather than threshold/objective values.
· Program Affordability -In place of the resources required table used in a CDD, programmed funding by year for software development and sustainment, and for hardware refresh and integration, is identified. Rationale for the level of funding is required in the same manner as for a COO.
In cases where previously validated CDDs are proposed to transition to the IT Box model, the previously validated CDD is amended with IS-CDD content and revalidated to delegate oversight authority. Successor documents used, whether in regular JCIDS or alternate formats, must be provided to the KM/ DS system for information purposes and visibility in the capability requirement portfolios.
c. IT Box
The IT Box calls for fewer iterations of validating documents by describing the overall IS program in the IS ICD, and delegating validation of detailed follow-on requirement and solution oversight to a flag-level organization other than the JROC or JCB.
The components of the IT Box model used in the IS ICDs are illustrated below.
[image:]
Organization and Oversight: Identify the flag-level oversight body, the chair, and the organizations providing members.
Capabilities and Initial Minimum Values: List the operational attributes/initial values that apply to this IS-ICD. To accommodate the initial review of the Net Ready Key Performance Parameter (NR KPP) for IS-ICDs, Sponsors will include an NR KPP table with initial minimum values in IS-ICDs.
Hardware Refresh & System Enhancements and Integration Cost Controls: Cost per year; life cycle cost; and rationale.
Applications and System Software Development Cost Controls: Cost per year; life cycle cost; and rationale.
Managing Requirements Using the IT Box:
As the IS-lCD and IS-CDD only streamline the applicable requirements processes, the Sponsor must still ensure compliance with acquisition policy and processes in accordance with DoDD 5000.01 and DoDI 5000 .02, and Information Support Plan (ISP) policy and processes in accordance with DoDI 8330, 01.
Since the standard CDD and CPD are not typically required, an IS-lCD or IS-CDD provides the flexibility to manage IS requirements with alternate documents and validation processes as necessary, as long as development efforts remain within the boundaries of the validated IT-Box and any additional guidance provided by the validation authority.
A CPD is not required as a successor document to an IS-CDD. The JCIDS Manual provides examples of successor documents for IT Box programs that may be used for managing follow-on IS efforts. Actual names, content and approval process are at the discretion of the delegated oversight authority.
· Requirements Definition Package (RDP)
The RDP (or equivalent) is a first level refinement of one or more capability requirements identified in an IS-lCD or IS-CDD, and is co-developed by the operational user (or representative) and the program office. The RDP (or equivalent) identifies the KPPs (including the NR KPP), KSAs, and APAs necessary to scope and cost a specific solution implementation. The RDP (or equivalent) may also identify non -materiel changes that need to be implemented to fully realize the IS capability.

· Capability Drop (CD)
The CD (or equivalent) could describe the performance characteristics of a relatively small increment of capability included in a software build necessary for partial deployment of the capability solution, typically developed and fielded within a short period of time. It could be developed through a rapid prototyping effort with the user to ensure it meets their needs. A CD (or equivalent) could be developed directly from the definitions in the IS-lCD in the event of a more timely need for the capability. More commonly, multiple CDs (or equivalents) would be derived from an RDP (or equivalent) or IS-CDD to deliver all of the capabilities defined in the RDP (or equivalent) or IS-CDD.
Regardless of documents used, the Sponsor must satisfy the NR-KPP, when applicable, and any acquisition activities that depend on content from capability requirement documents.
d. Net-Readiness Key Performance Parameter (NR KPP)
Net-ready attributes determine specific criteria for interoperability, and operationally effective end-to-end information exchanges which are traceable to their associated operational context, and are measurable, testable, and support efficient and effective T&E.
The NR KPP identifies operational, net-centric requirements in terms of threshold and objective values for MOEs and MOPs. The NR KPP covers all communication, computing, and electromagnetic spectrum requirements involving information elements among producer, sender, receiver, and consumer. Information elements include the information, product, and service exchanges. These exchanges enable successful completion of the warfighter mission or joint business processes.
The NR KPP includes three attributes derived through a three step process of mission analysis, information analysis, and systems engineering. These attributes are then documented in solution architectures developed according to the current DODAF standard in reference DOD CIO, August 2010, “DOD Architecture Framework (DODAF), Version 2.02,”
Attribute 1: Supports military operations.
Attribute 2: Is entered and managed on the network.
Attribute 3: Effectively exchanges information.

Information Support Plan (ISP)
The ISP is a key document in achieving interoperability certification. The ISP describes IT and information needs, dependencies, and interfaces for programs. It focuses on the efficient and effective exchange of information that, if not properly managed, could limit or restrict the operation of the program in accordance with its defined capability. The ISP is prepared by the program office. See DODI 8330.01.
2. Defense Business Systems Problem Statement
Special Requirements for Defense Business Systems:
The Investment Review Board (IRB) must approve the certification required by public law for business systems with a development or modernization cost of $1 million or more. The IRB is established and chaired by the DoD Deputy Chief Management Officer (DCMO). The IRB assists the Chair in prioritizing DoD enterprise business system capability requirements and providing oversight of processes and procedures for business systems that support defense business operations.
The Business Enterprise Architecture (BEA) is the enterprise architecture for the DoD business information infrastructure. The BEA serves as the blueprint to ensure the right capabilities, resources and material are delivered to our warfighters through ensuring accurate, reliable, timely and compliant information across the DoD.
Certification indicates that the system:
1. Is in compliance with the Business Enterprise Architecture; or
2. Is necessary to achieve a critical national security capability or address a critical requirement in an area such as safety or security; or
3. Is necessary to prevent a significant adverse effect on a project that is needed to achieve an essential capability, taking into consideration the alternative solutions for preventing such adverse effect.
DBS cannot obtain Milestone A approval unless the Milestone Decision Authority has determined the system can achieve initial operational capability within 5 years.
Requirements for DBS do not follow JCIDS procedures. A Problem Statement is used in lieu of ICDs, CDDs and CPDs. A Problem Statement is a stand-alone Defense Business System requirement document to support the Material Development Decision, and later key decision events and milestones. The Problem Statement documents DBS requirements and is approved by the IRB chair. It documents the business and supporting analysis, and evolves over time as those needs are refined. The Joint Staff will review the initial Problem Statement to determine whether there is Joint Staff interest.
Module 4 – Cost Estimation, Budgeting and Contracting (35-40 minutes)
1. Why Cost Estimation is important
The role of software as the most critical part of weapons systems is growing as is the % of DoD Budget. By Automated Information Systems’ very nature, 100% of the functionality is performed by software.
[image:]
$28B annually to support operations, maintenance and modernization of various DoD IT systems:
· $9B for C3I systems
· $19B for business systems
(Source/Current?)
Software is a key component in almost every major system that DoD acquires. As such, it is critical that cost and schedule are estimated accurately. Because software costing considerations are fundamentally different than hardware costing considerations, the topic of software cost estimating receives particular emphasis.
[image:]
As this comparison of two Standish Group analyses of federal government software projects shows, cost and schedule were better managed in 2000 than they were in 1994. Specifically, average schedule overrun and average cost overrun have decreased, while percentage of projects completed successfully has nearly doubled (note: the other two metrics were not explicitly captured in 1994).
However, we will have a long way to go: more than half of government software projects fail (i.e. are not completed on time, on budget, and with all required functionality), and average cost and schedule overruns remain near 50%.
(Is there more current data?)
Project Success:
We are not getting any better at delivering software successfully, if success is measured by delivering the desired functionality on time and within budget.
[image:]
Estimating the size and cost of software is a risky business. When software is a crucial component in numerous space, weapon, aircraft, and information technology projects critical to operations, accurate estimates of software costs are essential. Because software size is usually the most influential factor in determining software costs, good estimates of size are critical to good cost estimation. Rather than seeking the perfect method for estimating size and cost exactly, a more realistic approach to improving estimation is to reduce the risks (that is, to anticipate likely problems) associated with improper sizing and costing of software.
The goal is to provide an understanding of the sources of uncertainty and risk in sizing and costing software, and to provide insight into mitigating the risks when making choices about different sizing and costing options. We need to pay particular attention to the early stages of a project, when many of the factors needed to support estimation (such as the particulars of each system requirement) may be unknown or uncertain.
[image:]
2. What are cost and schedule drivers for software development
There are many ways to estimate software costs. For the purpose of this continuous learning module, we will look at the use of parametric models. Parametric models use inputs consisting of numerical or descriptive values to compute program size in SLOC. Parametric models develop estimates through mathematical formulas that often use statistical relationships between the size and software characteristics that affect size (e.g., programming language).
Parametric models in general are fast, easy to use and helpful early in a program. The use of parametric models serves as valuable tools for systems engineers and project managers to estimate engineering effort or perform tradeoffs between cost, schedule and functionality. It gives us great insight to the factors affecting software development costs so that we can have a positive effect in making the right decisions to lower costs.
1. Parametric models require historical data collected from many development efforts.
2. From the historical data cost estimating relationships (CERs) are formed as mathematical algorithms relating cost factors. The parametric models use numeric inputs for explanatory variables reflecting system characteristics to compute cost. A cost estimating relationship between parameters provides a logical and predictable correlation between the physical or functional characteristics of a system and the resultant cost. A parametric CER may account for factors such as cost quantity relationships, inflation, staff skills, schedules etc.
3. These models are often implemented in sophisticated software applications where the CER is not apparent to the user but the model parameters can be adjusted to perform a cost estimate.
4. Those using the models must analyze their proposed project and provide 1) a project size estimate and 2) an estimate of the parameters that could affect the cost of their project.
5. Parametric models exist for both System and Software Development.
Pros: Provides excellent visibility of software cost drivers. Computer-based tools allow for excellent conducting “what-if” analyses
Cons: Constrained by the amount and quality of the data. Sensitivity of the tool requires an expert assessment of expected cost drivers. Must estimate project size prior to using the model (likely using expert judgment)
When using the parametric cost model, cost drivers can be classified into several different types as indicated on the slide
It is important to understand what the cost drivers are, how to recognize when they are driving up the costs to the government and how they can be managed to reduce cost.
What is a cost driver/cost factor? A cost driver is anything that effects the cost of building a piece of software. Usually cost drivers can be controlled.
What is a scale factor? It is a group of 5 cost drivers that can grow exponentially (diseconomy of scale)
3. Which are linear and which are exponential
Cost factors are: Product, platform, equivalent source lines of code, personnel, the project and scale factors.
Product: Required Software Reliability, Data Base Size, Product Complexity, Developed for Reuse, Documentation Match to Life-Cycle Needs
Platform: Execution Time Constraint, Main Storage Constraint, Platform Volatility
Personnel: Analyst Capability, Programmer Capability, Personnel Continuity, Applications Experience, Platform Experience, Language and Tool Experience
Project: Use of Software Tools, Multisite Development, Required Development Schedule
Equivalent Source Lines of Code (ESLOC): New code + modified code + reused code
Scale factors are exponential (i.e., diseconomies of scale): Precedentedness, Development Flexibility, Architecture / Risk Resolution, Team Cohesion, and Process Maturity.
4. Which are within program office’s control, how to influence contractor
Architecture/Risk Resolution, Team Cohesion and Process Maturity are the only scale factors that a program office can control through management actions and use to influence the contractor. Precedentedness and development flexibility, are usually fixed by the nature of the project.
5. What do you do with a cost estimate
Estimates are necessary to establish systems engineering and software development budgets, as well as facilitate trade-offs and contract negotiations.
Contract costs are used to prepare program costs that are submitted as part of the President’s Budget
6. Program Funding Profiles, Appropriations, IT Portfolio Management (budget perspective)
Are NSS developmental funding profiles similar to AIS profiles? NSS are a mix of RDT&E, Procurement and O&M. Do AIS and IT NSS follow the same mix? RDT&E and O&M, with no Procurement? There is discussion/recommendations from the DSB to have an IT Appropriation. Discuss the reason that is recommended.
Many AIS and NSS are managed within an IT Portfolio. Portfolios are challenged to balance the funding needs from within the portfolio’s top level funding line. One program’s overrun often leads to another program having to be the bill payer.
7. Contract Types, Incentive Structures, IP Strategy
ELO 2.1.1.5 Define modular contracting.

MT5.1. “Modular Contracting” means that the modules identified within an increment of delivery by Program Leadership in the Program’s Acquisition Strategy are loosely coupled (i.e., use open interface standards/easy to change), highly cohesive (i.e., functionally common) and are of sufficient size to maximize competition benefits, while minimizing the threat of vendor lock.

ELO 2.1.1.6 Recognize the purpose of modular contracting.

MT6.1. The purpose of “Modular contracting” is to provide capable modules that reduce program risk and to incentivize contractor performance while meeting the Government’s need for timely access to rapidly changing technology.

ELO 2.1.1.7 Summarize the major characteristics of a “Modular Contracting” module.

MT7.1. “Modular Contracting” modules are:
Easy to manage in that modules are contracted for in the easiest way to manage; for example, a COTS product would be one module of capability

Divided and defined to address complex information technology objectives in smaller, workable chunks of capability; for example, we might contract separately for the database module of capability; Complex capabilities should be their own module

A way to reduce risk of potential adverse consequences on the overall project by isolating and avoiding custom-designed (Developer Proprietary) modules of the system. Proprietary capabilities should be their own module of capability.

ELO 2.1.1.11 Given an IT acquisition scenario, recommend an incentive structure.

MT11.1. Contract incentives need to be employed to achieve required cost, schedule, and performance outcomes; your incentives need to promote maximum competition to drive overall prices down and performance up.
MT11.2. The Software Program Manager’s Network (SPMN) 16 Software Development Best Practices can be used as the basis to create Incentive Awards in your contract.
MT12.1. Government needs technical data and software delivered with sufficient rights to enable the acquisition and life cycle support strategies to be implemented.
Reference: BBP 2.0 and 3.0 – enabling competition at all phases of the acquisition life cycle and employing open systems architecture.
8. Leveraging Competitive Environments
Competition, direct or indirect, is the most effective motivator for industry to reduce costs and improve performance. The Competition in Contracting Act (CICA) was enacted in 1984 to promote competition and thus reduce costs and improve performance. CICA established full and open competition as the standard for most procurement actions.
Competition is important for a number of reasons:
1. Competition creates an incentive for contractors to provide goods and services at a lower price (economic efficiency);
2. Competition spurs innovation of transformational technologies, which allows the Department to field the best weapon systems for our warfighters quickly;
3. Competition yields improvements in the quality of products delivered and services rendered (firms that turn out low quality are driven out of the market and are unable to effectively compete);
4. Competition affords the Department the opportunity to acquire performance improvements (e.g., faster, lighter, more sustainable) by using “best value” source selection criteria;
5. Competition provides opportunities for capable small businesses to enter new markets;
6. Competition enhances (or maintains) a strong defense industrial base which provides an operational surge capability to handle demand spikes, and;
7. Competition curbs fraud by creating opportunities to re-assess sources of goods and services reinforcing the public trust and confidence in the transparency of the Defense Acquisition System.
Many of the reasons competition is desirable can be directly traced back to challenges and advantages in the development of Information Technology.

From COL Flanders’ “Dirty Dozen + 4” Twelve Tips for SW PMs:
Manage the money … personally
· Know how much money you have (it’s harder than you think)
· Know what it is being used for to the level of the check (over $1,000) for the lifecycle of the program
· Know “color of money” law – sustainment vs. development; working capital vs. appropriated; time limits on expiration; bona-fide need … easy to break the law; easy to lose money
· Use a FundsTrakker … or something like it
· If you don’t meet with your financial and contracts people for at least 1 hour every week in a dedicated forum; you are doomed (I hold separate sessions for finance and contracts)

Module 5 – Software Systems Engineering (35-40 minutes)
1. Key Technical Management Processes for Successful Programs
a. Requirements Management
“The Requirements Management process area maintains the requirements. It describes activities for obtaining and controlling requirement changes and ensuring that other relevant plans and data are kept current. It provides traceability of requirements from customer to product to product component. Requirements Management ensures that changes to requirements are reflected in project plans, activities, and work products. This cycle of changes may affect all the other Engineering process areas; thus, requirements management is a dynamic and often recursive sequence of events. The Requirements Management process area is fundamental to a controlled and disciplined engineering design process”. [Capability Maturity Model Integration for Development, CMMI-DEV v1.3, pp 44-45. 2010]
· Describe the impact of incomplete and unstable requirements on the acquisition lifecycle of a software-reliant system.
· Incomplete and unstable requirements negatively affect translation from capabilities statements into executable requirements to achieve successful acquisition programs. This is particularly relevant with respect to software because software enables a significant amount of functionality of our modern weapon systems.

· Describe the impact of developing and verifying a large and complex software architecture on the acquisition lifecycle of a software-reliant system.

· Software intensive systems are constructed to satisfy organizations’ business and mission goals. The architecture is a bridge between those (often abstract) business and mission goals and the final (concrete) resulting system. While the path from abstract goals to concrete systems can be complex, the good news is that software architectures can be designed, analyzed, documented, and implemented using know techniques that will support the achievement of these business and mission goals.

b. Risk Management
Risk: "Risks are future events or conditions that may have a negative effect on achieving program objectives for cost, schedule, and performance. Risks are defined by (1) the probability (greater than 0, less than 1) of an undesired event or condition and (2) the consequences, impact, or severity of the undesired event, were it to occur."
(Department of Defense Risk, Issue, and Opportunity Management Guide for Defense Acquisition 	Programs June 2015, pg 3)
Note: Risks differ from issues in that risks have not yet occurred, whereas if the risk has been realized (the root cause has occurred) then it is an issue.

Risk management: Risk management is a comprehensive process that requires organizations to: (i) frame risk (i.e., establish the context for risk-based decisions); (ii) assess risk; (iii) respond to risk once determined; and (iv) monitor risk on an ongoing basis using effective organizational communications and a feedback loop for continuous improvement in the risk-related activities of organizations.
(NIST SP 800-39, Managing Information Security Risk, Mar 2011, pg 6)

c. Configuration Management
i. Configuration Control Board
ii. H/W and S/W Synchronization
d. Interface Management
2. Integration Challenges with COTS, GOTS, Configurable COTS, Glue Code
Describe the impact of using a great deal of COTS and open source software on the acquisition lifecycle of a software-reliant system.
1. The issues associated with using of COTS and open source software on the acquisition lifecycle of a software-reliant system are significant. Programs significantly underestimate the amount of effort and resource needed to successfully implement a COTS (or any) system. Even worse, they can have a wrong perception about how much work the vendor will do and how much work the client organization must do. It can come as quite a shock to many programs when they realize how much of an investment this really is to include COTS.
2. When employing COTS software, criteria for selecting among competitive alternatives may not include details of commercial design or performance but should require ample evidence that the software is adequate for its intended use. Code-scanning tools should be used to help ensure that COTS software does not pose a security or software assurance risk. (See DAG Chapter 7 Acquiring Information Technology, Including National Security Systems and NIST-SP-800 series publications for additional information.) In addition, mitigation of security and information assurance risks associated with COTS software go beyond code-scanning techniques for their solution. Those risk mitigation efforts should be expanded to make use of activities identified in DAG section 4.3.18.24. System Security Engineering, as well as the activities discussed in DAG Chapter 13 Program Protection.
3. That said, the 2003 MITRE study, "Use of Free and Open Source Software (FOSS) in the U.S. Department of Defense", for analysis purposes, posed the hypothetical question of what would happen if OSS software were banned in the DoD, and found that OSS "plays a far more critical role in the DoD than has been generally recognized... (especially in) Infrastructure Support, Software Development, Security, and Research". In particular, it found that DoD security "depends on (OSS) applications and strategies", and that a hypothetic ban "would have immediate, broad, and in some cases strongly negative impacts on the ability of the DoD to analyze and protect its own networks against hostile intrusion. This is in part because such a ban would prevent DoD groups from using the same analysis and network intrusion applications that hostile groups could use to stage cyberattacks. It would also remove the uniquely (OSS) ability to change infrastructure source code rapidly in response to new modes of cyberattack".
4. The DoD CIO and the Services have released the following policies on Open Source Software:
a. The DoD CIO issued a memorandum titled "Clarifying Guidance Regarding Open Source Software (OSS)" on 16 October 2009
b. The Department of Navy CIO issued a memorandum with guidance on open source software on 5 Jun 2007. This memorandum only applies to Navy and Marine Corps commands, but may be a useful reference for others. This memo is available at http://www.doncio.navy.mil/PolicyView.aspx?ID=312 .
c. The Open Technology Development Roadmap was released by the office of the Deputy Under Secretary of Defense for Advanced Systems and Concepts, on 7 Jun 2006. It is available at http://www.acq.osd.mil/jctd/articles/OTDRoadmapFinal.pdf .
d. The Office of Management and Budget issued a memorandum providing guidance on software acquisition which specifically addressed open source software on 1 Jul 2004. It may be found at http://www.whitehouse.gov/omb/memoranda/fy04/m04-16.html .
e. US Army Regulation 25-2, paragraph 4-6.h, provides guidance on software security controls that specifically addresses open source software. This regulation only applies to the US Army, but may be a useful reference for others. The regulation is available at http://www.army.mil/usapa/epubs/pdf/r25_2.pdf .
The bottom lines is that the program needs to establish the software acquisition strategy as early as possible to address function and component allocation to software and determine what is to be developed, what is provided as Government off-the-shelf (GOTS) software, commercial-off-the-shelf (COTS) software, or open source software (OSS), and what is a mix or hybrid. The strategy should also incorporate plans for associated data and intellectual property rights for GOTS, COTS, and OSS
From COL Flander’s “Dirty Dozen + 4” Twelve Tips for DoD SW PMs:
Understand COTS software … the difference between configuration, enhancement, and customization
Typical Problems When Configuring A COTS Software Product:
Cannot adopt a single process for doing things the same way across the organization
“Out of the box” software not capable of doing something required by the organization
 Sometimes There Are Good Reasons:
Law - different laws in different geographic locations, new laws not yet implemented in the COTS product
Security - aggregation of data in a single process makes it classified, inability to meet network connection criteria
Safety issues – nuclear safety, safety of use, safety of flight, etc.
Inability To Function - Loss of functionality that would catastrophically impact productivity (cause unacceptable cost / personnel increase) … with no reasonable workaround
Incompatible interface requirements with external systems - e.g., the COTS software is designed to do ALL of a process, but cannot be implemented in an organization because that process is “chopped up” across many systems ... that are external (e.g. another company or nation’s systems)
Definitions:
1) Configurations: Normal set-up of options. Think of it as making selections from a Chinese menu. COTS packages are highly configurable and have hundreds of options to select from. In a perfect world, when all selections are made, you have a useable product.
2) Enhancements: These are “extra” reports, interfaces, extensions, forms, and workflows … tailored to your organizations needs to make the system work effectively. These are also, normal … but, they cost money and take time to build and maintain. Ideally, you want to minimize these.
3) Customizations: This is modification of the commercial products standard baseline. If you do this, you now have a “one off” instantiation of the COTS product. Your organization is now the only one in the world using it. Standard upgrades will not work, you must pay to maintain the separate one-of-a-kind code base … forever.
5. Supply Chain Risk Management
ELO 33.1.1.1: Define IT Supply Chain Risk Management.
· LP 1. IT Supply Chain Risk Management (IT SCRM) is the process of identifying, assessing, and mitigating the risks associated with the global and distributed nature of ICT product and service supply chains.
Note: Fundamental to understanding this definition the student must also know the definition of supply chain, ICT, risk, and issue, and have an understanding of the risk management process.
· Supply Chain: A system of organizations, people, activities, information, and resources, possibly international in scope, that provides products or services to consumers
(CNSSI 4009, Committee on National Security Systems (CNSS) Glossary, April 6, 2015)
· Information and Communications Technology (ICT): Includes all categories of ubiquitous technology used for the gathering, storing, transmitting, retrieving, or processing of information (e.g., microelectronics, printed circuit boards, computing systems, software, signal processors, mobile telephony, satellite communications, and networks). ICT is not limited to information technology (IT), as defined in section 11101 of title 40, U.S.C.... Rather, this term reflects the convergence of IT and communications. (DoDI 5200.44 Glossary)
(DoDI 5200.44 Protection of Mission Critical Functions to Achieve Trusted Systems and Networks(TSN), November 5, 2012)
· Hardware Assurance (HwA): The level of confidence that hardware, e.g., electronic components such as integrated circuits and printed circuit boards, functions as intended and is free of vulnerabilities, either intentionally or unintentionally designed or inserted as part of the system's hardware throughout
(Systems Engineering and System Security Engineering Requirements Analysis and Trade-Off Roles and Responsibilities, Melinda Reed, Office of the Deputy Assistant Secretary of Defense for Systems Engineering presented at 18th Annual NDIA Systems Engineering Conference Springfield, VA | October 28, 2015 http://www.acq.osd.mil/se/briefs/2015_10_27_NDIA18-SSE-PP-Reed.pdf)
Note: Though hardware assurance is a well-known term the majority of emphasis is on the more narrow counterfeit parts
'Counterfeit electronic part' means an unlawful or unauthorized reproduction, substitution, or alteration that has been knowingly mismarked, misidentified, or otherwise misrepresented to be an authentic, unmodified electronic part from the original manufacturer, or a source with the express written authority of the original manufacturer or current design activity, including an authorized aftermarket manufacturer. Unlawful or unauthorized substitution includes used electronic parts represented as new, or the false identification of grade, serial number, lot number, date code, or performance characteristics. (Department of Defense, Defense Acquisition Regulations System48 CFR Parts 202, 231, 244, etc. Defense Federal Acquisition Regulation Supplement: Detection and Avoidance of Counterfeit Electronic Parts (DFARS Case 2012–D055); Final Rule. Federal Register 79:87, May 6, 2014,
· Software assurance (SwA):"The level of confidence that software functions as intended and is free of vulnerabilities, either intentionally or unintentionally designed or inserted as part of the software throughout the lifecycle.(DoDi 5200.44 Glossary)
DoDi 5200.44 Protection of Mission Critical Functions to Achieve Trusted Systems and Networks(TSN), November 5, 2012
Notes:
· CNSSI 4009 provides both the above definition and a second more operationally oriented definition from NASA-STD 8739.8 “The planned and systematic set of activities that ensure that software life cycle processes and products conform to requirements, standards, and procedures."

ELO 33.1.1.2: Identify market realities that limit the ability to purchase off-the-shelf components and software that is known to be secure.
· LP 2. Market trends, including globalization and foreign sources, create risks and constrain government mitigations.
· CNSSD No. 505, Supply Chain Risk Management (SCRM), 7 Mar 12, Foreword :
"In order to achieve cost efficiencies and innovations, the U.S. Government relies on the commercial information and communications technology (ICT) sector for components and services that support mission-critical networks, systems, and weapons. This reliance forces the U.S. Government to depend on the trustworthiness of the commercial ICT supply chain. However, trustworthiness in commercial ICT has become uncertain due to increasing globalization and the participation of unfamiliar, unknown, and changing actors in the supply chain. The U.S. Government must address the reality that the global marketplace provides increased opportunities for adversaries to penetrate ICT supply chains to subvert the components bound for U.S. Government critical systems to gain unauthorized access to data, alter data, interrupt communications, or disrupt critical infrastructures".
· NIST 800-161 in the introduction provides a strong discussion of DoD operating in the global environment, including discussion how that presents a risk.
· Fed Register DFARS discussion
· Security Architecture using Fragmented Execution and Replication for Protection Against Trojaned Hardware; Mark Beaumont, Bradley Hopkins and Tristan Newby; Defence Science and Technology
· A strong discussion of foreign influence on software (including COTS) is in Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on DoD Software, September 2007, USD-AT&L.
· LP 3. Economic rewards for counterfeits and tainted products provide the resources that allow supplier to develop sophisticated techniques to avoid detection, increasing the challenge of discovery; problems may not be found until after deployment.
DoD hardware supply chain failures were analyzed by the Senate Armed Services Committee in 2012 [SASC 2012], considering 1,800 DoD cases of suspected counterfeit parts involving 650 companies, each with their own supply chains. Over 70% of the suspect parts were traced to China.
It is important to note the following: 80% of the supply chains started with a U.S. supplier; the contractors for electronic assemblies were often not aware of the sources of the parts they procured, and complex supply chains can mask the true origin of parts. The increasing risks of obtaining counterfeit electronic components affect both government and commercial acquirers. Identifying counterfeits is now very difficult, as profitability enables suppliers of these bogus products to develop new and sophisticated techniques to counter even advanced detection techniques used by acquirers.
(Report of the COMMITTEE ON ARMED SERVICES UNITED STATES SENATE, http://www.gpo.gov/fdsys/pkg/CRPT-112srpt167/pdf/CRPT-112srpt167.pdf)
· LP 4. Supply chains and related risks for a specific product can change over the life of an acquisition.
· LP 5. Government purchases are a very small percentage of the electronic marketplace. Specific supply chain requirements can reduce the available pool of suppliers for an acquisition.
ELO 33.1.1.3: Given a scenario, identify cybersecurity risks associated with the software and hardware supply chains.
· LP 6. The risks to the ICT supply chain are wide and varied. These risks may include insertion of counterfeits, unauthorized production (with quality, integrity, and security implications), tampering, and theft, insertion of malicious software and hardware, as well as poor manufacturing and development practices in the ICT supply chain.
· LP 7. Counterfeit Materiel. An item that is an unauthorized copy or substitute that has been identified, marked, or altered by a source other than the item’s legally authorized source and has been misrepresented to be an authorized item of the legally authorized source (DoDI 4140.67, April 26, 2013 Glossary)
· LP 8. Hardware Trojans: " Hardware Trojans are undesired, malicious modifications to electronic circuits. They are designed to compromise the operation of systems containing the circuits, presenting a persistent threat to the security of the infected hardware, as well as any software executing on that hardware.
· Hardware Trojans can be inserted into an electronic circuit at any stage of development, manufacturing, or distribution [1]
· Hardware Trojans may operate continuously, or may lie dormant, waiting to be activated before performing their function. This can include modifying the behavior of the electronic circuit, degrading its performance, or compromising sensitive information that is processed or stored by the circuit."
· LP. 9. Off the shelf software, including firmware can contain vulnerabilities introduced by accident or on purpose, as well as be infected with malware. Additionally, software may have been developed with purposefully embedded vulnerabilities or weaknesses (e.g. back doors) or modified after its formal release
ELO 33.1.1.4: Identify the key policies and guidance, with their major thrusts, that DoD has adopted to address supply chain risk for ICS.
Note: It is important to be clear on which guidance applies to NSS only
· LP 10. CNSSD 505, Supply Chain Risk Management
· Requires supply chain risk management (SCRM) for NSS across the entire lifecycle…" to protect the confidentiality, integrity, and availability of NSS, and to mitigate and manage the risks…".
· Tenants include providing threat information, identifying an implementing processes and tools, and provides specific guidance in regard to ASICs.

· LP 11. DoDI 5200.44, Protection of Mission Critical Functions to Achieve Trusted Systems and Networks (TSN)
· Provides additional implementation details for CNSSD 505, Supply Chain Risk Management.
· Includes special attention to components that supplier can identify "…as specifically created or modified for DoD (e.g., military temperature range, radiation hardened)".
· Directs: “The identification of mission critical functions and critical components as well as TSN planning and implementation activities, including risk acceptance as appropriate, shall be documented in the Program Protection Plan (PPP) …) and in relevant IA plans and documentation in accordance with DoDI 8500.2
The accompanying DASD(SE) and DoD CIO Trusted Systems and Networks (TSN) Analysis document includes substantial implementation detail, checklists,
etc., that will prove useful to those implementing and executing a TSN (include SCRM)

· LP 12. NIST SP 800-161, Supply Chain Risk Management Practices for Federal Information Systems and Organizations.
· SCRM is an integral part of the risk management process
· Responsibility is distributed across organizational, process, and system tiers where the process activities Frame, Assess, Respond, and Monitor are applied
· Includes detailed risk assessment guidance that associated guidance on the use of controls to mitigate the identified risk.
· Provides OVERLAY for SCRM

· LP 13. The DASD(SE) Program Protection Plan Outline & Guidance
· Includes SCRM in the definition of Program Protection as “Program Protection is the integrating process for managing risks to advanced technology and mission-critical system functionality from foreign collection, design vulnerability or supply chain exploit/insertion, and battlefield loss throughout the acquisition lifecycle.
· Specifically calls out SCRM as a Trusted System Design Countermeasure to address vulnerabilities and threats
· Requires that prescribed supply chain threat assessments be specified in the PPP
· Requires that supply chain risks associated with software be addressed (i.e. establishing software trust thru establishing software pedigree and vetting/testing or other protection measures).
	
· LP 14. DFARs 2014 updates
· IAW guidance in the 2012 appropriation DoD made changes to the DFAR that implement counterfeit prevention.

Module 6 – Software Design & Development (45-50 minutes)
1. Software Architecture
ELO 8.1.1.13 Describe the Open Systems Approach (OSA).

MT 13.1 The term “Open Systems Approach” means an integrated business and technical strategy that:
a. Employs a modular design, and uses widely supported and consensus-based standards for its key interfaces;
b. Is subjected to successful validation and verification tests to ensure the openness of its key interfaces;
c. Uses an open system architecture allowing components to be added, modified, replaced, removed, or supported by different vendors throughout a program’s life-cycle in order to afford opportunities for enhanced competition and innovation while yielding significant cost and schedule savings and increased interoperability (FY2015 NDAA, Section 801).

MOSA enables acquisition and engineering communities to design for affordable change, employ evolutionary acquisition and spiral development, and develop an integrated roadmap for system design and development. Basing design strategies on widely supported open standards increases the chance that future changes to the system will be integrated in a cost-effective manner.
MT 13.2 The OSA is mandated by law for all ACAT I systems and any other system that uses Information Technology that is entering into concept development after January 1, 2016 unless there is a business case analysis conducted at a point in development where there is sufficient design information to conduct an independent life-cycle cost estimate demonstrating that an open systems approach is more expensive or is not practically achievable.
a. Modular Open Systems Approach
Open systems employ modular design, use widely supported and consensus-based standards for their key interfaces, and have been subjected to successful validation and verification tests to ensure the openness of their key interfaces. Open systems characteristics and principles may be dealt with as:

(1) design requirements (e.g., mandated open standards and protocols);
(2) derived requirements (e.g., need for open interfaces to enable interoperability);
(3) design constraints (e.g., need to adhere to open interface specifications as system components are designed);
(4) architectural attributes (e.g., need for an adaptable, upgradable, and reconfigurable system architecture);
(5) design considerations (e.g., taking into consideration modular and open systems design benefits and concerns); and
(6) business strategies to gain access to competitive sources of supply and effectively manage technological obsolescence.
b. FY 15 NDAA, Sec 801
c. Cloud Computing
2. Cybersecurity Design
a. What is Cybersecurity? Cybersecurity Strategy is an Appendix to the Program Protection Plan and is required at Milestone A
ELO 26.1.1.1 Define cybersecurity.

MT 1.1. Cybersecurity has officially replaced Information Assurance (IA).

MT 1.2. While cybersecurity and IA are similar, cybersecurity has a different focus, as identified in its definition
Cybersecurity focuses on prevention. This implies greater software assurance and supply chain risk management
Cybersecurity focuses on communication systems. This includes the many communication systems we have today, including smart phones, cloud computing, and other electronic means of communication that were not prevalent before 2010.

MT 1.3. Students must understand the limits of prevention – cybersecurity must also incorporate recognize, resist, and recover for what cannot be prevented; this is where considerations of risk come into play and your planning for cybersecurity must integrate with decisions of risk based on the RMF.

ELO 26.1.1.2 Identify the basic concepts, threats, and best practices associated with cybersecurity in the DoD.

MT 2.1. A few threats and threat vectors: Active and passive threats, cyber-terrorists, nation states, trusted insiders, …

MT 2.2. Cybersecurity threat: Any circumstance or event with the potential to adversely impact organizational operations (including mission, functions, image, or reputation), organizational assets, individuals, other organizations, or the Nation through an information system via unauthorized access, destruction, disclosure, modification of information, and/or denial of service.

MT 2.3. Cybersecurity threat vector: a path or a tool that a Threat Actor uses to attack the target.

MT 2.4. Cybersecurity focuses on prevention and communications instead of reaction and information only as was often considered under Information Assurance.

MT 2.5. The job of cybersecurity is to protect and enable the user.
ELO 26.1.1.9 Apply the Program Protection Plan to an IT Acquisition Scenario.

MT 9.1. Program Protection activities and events should be integrated in overall program scheduling. Program Protection Plan Outline & Guidance. Version 1.0, July 2011.
ELO 26.1.1.10 Identify the purpose and key components of a Program Protection Plan.

MT 10.1. The purpose of the PPP is to help programs ensure that they adequately protect their technology, components, and information.

MT 10.2. The Acquisition Cybersecurity Strategy must now be appended to the PPP.

b. Security Architecture, Defense in Depth, Internal/External Considerations/Software Items/Software Units
MT 7.3. Introduce students to Security Quality Requirements Engineering (SQUARE)
A nine-step process that helps organizations build security, including privacy, into the early stages of the production lifecycle.
Requirements problems are the primary reason that projects
· are significantly over budget and past schedule
· have significantly reduced scope
· deliver poor-quality applications that are little used once delivered, or are cancelled altogether
One source of these problems is poorly expressed or analyzed quality requirements, such as security and privacy. Requirements engineering defects cost 10 to 200 times more to correct during implementation than if they are detected during requirements development. Moreover, it is difficult and expensive to significantly improve the security of an application after it is in its operational environment.
Using SQUARE can enable your organization to develop more secure, survivable software and systems, more predictable schedules and costs, and achieve lower costs. An enhanced robust tool, called SQUARE for Privacy, or P-SQUARE, is available for free to help you use the SQUARE process for security, privacy, or both.
The SQUARE Method for Acquisition
Organizations that are acquiring software have the same security concerns as organizations that are developing software, but they usually have less control over the actual development process. Depending on the situation, the acquisition stakeholders may be heavily involved in security requirements engineering, or they may be limited to reviewing requirements developed by the supplier. The SQUARE process for security requirements engineering can be readily adapted for different acquisition situations.
The SQUARE Method can adapt to these situations:
· Your acquisition organization has the typical client role for newly developed software.
· Your acquisition organization specifies the requirements as part of the RFP for newly developed software.
· Your organization is acquiring COTS software.
A tool, called SQUARE for Acquisition, or A-SQUARE, is available for free to help stakeholders, requirements engineers, and contractors/vendors, for a variety of acquisition cases.
c. Software Assurance
ELO 1.1.1.9 Identify the laws and policies requiring the use of software assurance.

MT9.1. FY13 NDAA, Section 933 mandates the use of software assurance tools and practices on all DoD “covered systems.” A “covered system” includes all NSS, all non-NSS Mission Assurance Category I (MAC 1) business and administrative systems.

MT9.2. DoDI 5000.02 mandates the use of software assurance for all DoD Programs as described in each program’s Program Protection Plan (PPP).
d. Risk Management Framework - Assessment & Authorization
26.1.1.13 Identify the six steps of the Risk Management Framework (RMF) for DoD Information Technology (IT)

MT 13.1. The six steps of the RMF are: 1) Categorize Information System, 2) Select Security Controls, 3) Implement Security Controls, 4) Assess Security Controls, 5) Authorize System, 6) Monitor Security Controls
e. Program Protection Plan
i. Critical Program Information
ii. Critical Functions
3. Software Development Methods

The Software Development Plan (SDP) describes a developer’s plans for conducting a software development effort. The SDP provides the acquirer insight and a tool for monitoring the processes to be followed for software development. It also details methods to be used and approach to be followed for each activity, organization, and resources. The SDP should be developed in the contractor‘s preferred format, and should document all processes applicable to the system to be acquired, at a level of detail sufficient to allow the use of the SDP as the full guidance for the developers. It should reference specific standards, methods, tools, actions, reuse strategy, and responsibility associated with the development and qualification of all requirements, including safety and security.

The SDP will include:
· Plans for performing general software development activities, including:
· Software development processes.
· Software development approaches
· Software development methods.
· Software development standards
· Reusable software products and Commercial off-the-Shelf (COTS).
· Software types/categories (i.e., operational software, test software, support equipment software) and associated processes, controls, and documentation.
· Handling of critical requirements (such as safety, security, and information assurance).
· Incremental development approach, planning, and management/oversight.
· Establishing the system/software engineering environment.
· Computer resources utilization and reserve capacity/growth management.
· Software-related development processes, including:
· Overall development methodology.
· Prototyping and simulations.
· System requirements analysis and design, including requirements definition and allocation
· Software requirements analysis.
· Software preliminary and detailed design.
· Software unit integration and testing.
· Software component integration and testing.
· Supporting processes and information, including:
· Software risk management.
· Approach to requirements traceability.

· Incremental Development: The software-reliant system contains too much software to develop in a purely sequential strict “waterfall” manner. Instead, the software is developed in a series of increments, each of which adds functionality and capabilities. The contractor/developer may develop resulting software increments (often referred to as builds) strictly to help organize and manage the development of the software. However, these increments may also be released to the program office, either for the purposes of independent testing or for fielding (i.e., delivery to the end users and operators).
· Iterative Development: Each increment of software will typically contain architecture, design, or implementation defects or weaknesses that need to be fixed in future increments. The requirements may also change, for example due to changing threats and new technologies. The contractor/developer will iterate the software and its related documentation to fix defects and make improvements.
· Concurrent Development: Also referred to as parallel development, the software is often developed concurrently in multiple ways.
· Software in different subsystems, computer software configuration items (CSCIs), or other components will be simultaneously developed by different teams working in parallel with each other.
· Software in different increments may be developed in an overlapping manner in which a following increment is started before its preceding increment is completed.
· Software requirements, architecture, design, implementation, integration, and testing activities may overlap even within a single team as its members rapidly jump between these activities in a manner sometimes referred to as “design a little, code a little, and test a little.”
· Time-boxed Development: To ensure timely delivery and avoid “analysis paralysis”, each increment is typically time-boxed so that it has specific associated deadlines. These deadlines could occur relatively infrequently at major programmatic milestones or quite frequently at contractor/developer-internally scheduled “inch pebbles”.
· Sequential vs. Evolutionary/Agile Development: Programs tend to fall along a spectrum of development cycles from relatively sequential “waterfall” programs to agile programs, and some programs use a hybrid of the two.
· Waterfall acquisition development cycles tend to have one or at most two to four long-duration increments (typically one or more years), to have minimal iteration due to the baselining of requirements and architecture, to be largely sequential with little in the way of concurrent development, and have large time boxes associated with their small number of long-duration increments.
· Evolutionary acquisition development cycles tend to have many short-duration increments (typically varying from several days or weeks to a few months), to have a great deal of iteration as requirements evolve, to be highly overlapping, and have short-duration time-boxes.

ELO 10.1.1.1 Given a list of software methodologies, match the software methodology best suited for the attributes of a given development project.

MT1.1. There is not one software methodology that can be used for all software development projects.

ELO 10.1.1.2 Given an IT acquisition scenario, identify the most appropriate software methodology (or a combination of methodologies) to meet the expectations of the government.

MT2.1. Even though a program has started you need to continually reassess your software development methodology to ensure it continues to meet operational / user needs.

MT2.2. Even moderately complex projects typically require a combination of software development approaches to provide the most value to the end user and other key acquisition stakeholders.

MT2.3. DoD guidance doesn’t specify which software development methods must be used with any of the life cycle models elaborated in DoD policy documents such as DoD 5000.02. That decision should be made based on project characteristics.
Characterizing projects when considering software development methods
There are many ways to characterize projects that include software development. Some dimensions that are important to selecting an effective software development method include:
· Stability of technology base (how quickly is the base technology expected to evolve?)
· Stability of program office leadership and staff (what is the rhythm of program office staff and leadership rotating to other programs?
· Availability of support contractors (SETAs, FFRDCs) to provide continuity within the program office
· Anticipated duration of initial development project (if a new product acquisition)
· Anticipated life span of product
· Size and number of contractors to be managed
· Level of change being experienced in the operational environment the product will be fielded to
· Degree and frequency of expected requirements changes during the life of the program
· Cultural norms of the developer and program office (how collaboratively are both parties willing to work?) (Lapham et al, 2010, 2011)
· Contracting constraints
· Alignment of software acquisition goals with the larger program, where software is a component of a larger hardware-based system (typically termed embedded systems)
· Alignment of acquisition goals (for delivery, functionality, funding) with operational goals

a. Waterfall
Waterfall or Traditional: The waterfall / traditional methodology was introduced in a paper from Winston Royce (Royce, 1970). Waterfall is generally practiced as a linear approach to software development. In this methodology, the general sequence of events is something like:
1.Gather and document requirements
2.Design the architecture and components of the system
3.Code and unit test the components
4.Perform integration and system testing
5.Perform user acceptance testing (UAT)
6.Fix any issues (throughout)
7. Deliver the finished product (Lotz, 2013).
Waterfall approaches can be applied to small or large projects. When applied to larger projects, considering how the project can be broken up into smaller increments is typical.
b. Incremental Waterfall
When multiple small waterfall cycles that result in fieldable software are sequenced together, the approach is usually termed “incremental”. Note, however, that incremental is more a definition of release sequencing than an actual development approach.
c. Spiral
Spiral: a family of software development processes characterized by repeatedly iterating a set of elemental development processes and managing risk so it is actively being reduced. The spiral development model is a risk-driven process model generator. It is used to guide multi-stakeholder concurrent engineering of software intensive systems. It has two main distinguishing features. One is a cyclic approach for incrementally growing a system's degree of definition and implementation while decreasing its degree of risk. The other is a set of anchor point milestones for ensuring stakeholder commitment to feasible and mutually satisfactory system solutions. Risks are situations or possible events that can cause a project to fail to meet its goals.
They range in impact from trivial to fatal and in likelihood from almost certain to improbable. A risk management plan enumerates the risks and prioritizes them in degree of importance, as measured by a combination of the impact and likelihood of each. For each risk the plan also states a mitigation strategy to deal with the risk. For instance, the risk that technology is unready may be mitigated by an appropriate prototype implementationn an early spiral cycle.
d. [bookmark: _GoBack]Agile
Agile development emerged in 2001, when 17 leading software developers created the Agile Manifesto to design and share better ways to develop software. The values and 12 principles of the Agile Manifesto can be distilled into four core elements:
· Focusing on small, frequent capability releases
· Valuing working software over comprehensive documentation
· Responding rapidly to changes in operations, technology, and budgets
· Actively involving users throughout development to ensure high operational value

The White House document on innovative contracting case studies defines states “Agile is both a philosophy and an umbrella term for a collection of methods or approaches that share certain common characteristics (Alliance, 1998; Budget, 2014).” At its core, the agile philosophy is based on 4 values and 12 principles described in the Agile Manifesto ("Manifesto for Agile Software Development," 2012). Because Agile is based on principles rather than practices in a defined sequence, there is no accepted criteria or “checklist” to determine if an organization is using agile development methods. The Agile Manifesto only lays the ground work for a collection of methods such as: Scrum, eXtreme Programming (XP), Dynamic Systems Development Method (DSDM), etc. Even within these software development methodologies there is a high degree of variance in underlying implementations due to their ability to adapt to different product and development contexts. So simply stating that someone is “using agile development” provides little information as to their actual development practices. Providing the exact method being used, such as Scrum, provides more details regarding the likely agile implementation; however, it’s not until you know how the organization is implementing the agile method that you can identify which agile practices they are using and, most importantly, how they are being used.
4. Software Measures
ELO 19.1.1.1 Identify the value of an effective IT measurement and analysis program.

MT 19.1.1.1.1 Software development progress and performance cannot be objectively characterized and described without measurement.
Supporting Elements:
a. Measurement enables:
1. internal and external program communication
2. tracking of the status of defined program objectives
3. early identification and correction of program issues and performance shortfalls
4. informed business, technical, and program portfolio trade-off decisions
5. justification of program decisions
b. Measurement is a mandatory input into the IT program decision process.
c. Measurement provides objective information to support:
DoD policy infers the use of objective, measurement derived information.
ELO 19.1.1.2 Identify the requirements for an effective IT measurement and analysis program
implementation.
MT 19.1.1.2.1 The measures applied on a given program are driven by what the decision maker needs to know - information needs/information requirements.
Supporting Elements:
a. information needs change both over time and with key program events
b. application of a static list of pre-defined measures does not therefore satisfy critical decision information needs.
There are multiple decision makers on a complex IT program - the key ones being the program manager and the enterprise manager
MT 19.1.1.2.2 The program technical and management processes and infrastructures define what can actually be measured
Supporting Elements:
a. different measures can satisfy the same information need
b. process and infrastructure changes cannot be “forced” by pre-defining a measurement requirement
c. the IT measurement program must be configured to address the unique technical and business characteristics of the program and/or enterprise.

MT 19.1.1.2.3 Measurement results must be interpreted within the context of the program environment
Supporting Elements:
a. measurement results are only a part of the decision process
b. there are many reasons why the numbers look the way that they do
c. there are few “absolutes” - definitive good/bad interpretations based on an expected measurement result - there are no “magic numbers”
d. measurement results must be used “correctly”

Added Supporting Elements (MT19.1.1.2.1 through MT19.1.1.2.3):
a. Measurement results must be used to realize any value from the IT measurement and analysis program.
b. Program decision makers must be committed to the generation and use of fact-based information
c. measurement requires management involvement to succeed
d. communication of the measurement results is critical resources must be identified and allocated

ELO 19.1.2.2 Create a set of program IT measures that are linked to the program decision information requirements.

MT 19.1.2.2.1 The measures that are actually implemented are a synthesis of user information needs and the ability to generate the measurement data. The implemented measurement set is directly influenced by the instantiated program technical and management processes.

Supporting Elements:
a. This includes:
1. The current set of prioritized information requirements define what measures are implemented and the focus of the measurement analysis
2. With limited program resources, measurement efforts must be focused on the critical information requirements - these change over the course of the program
3. There are different “types” of information needs. In general these include: 1) describing IT process and product characteristics, 2) assessing the accomplishment of programmed activities and the achievement of pre-defined thresholds, 3) quantifying the changes in outcomes due to a previous action(s), and 4) assessing the adequacy of the performance of the IT process or product.
4. The different “types” of information needs are supported by different measures and different analysis techniques
5. Program and systems IT performance parameters and associated information needs are highly interrelated - decisions that result in a change in one area almost always impact another - strong cause and effect relationships exist
6. The key performance parameters include: 1) system size and capability, 2) program resources and cost, 3) development and maintenance schedule and progress, and 4) product quality program decisions must consider these relationships - the measurement and analysis process helps to quantify them
a. The DoD IT environment changes rapidly: acquisition process changes, security/risk mandates, resource constraints, technology impacts, life-cycle focus, etc. - making defensible IT decisions is critical to program success.
b. The project environment also changes rapidly - there are different decisions that must be made as the program progresses along its life cycle - and different risks and problems that must be addressed
c. Measurement and analysis helps to define objective activity and performance expectations (thresholds) as well as helps to track execution performance against these expectations
ELO 19.1.2.3 Apply the measurement results to support IT program decisions.

MT 19.1.2.3.1 The measurement process supports three primary types of information needs across the IT program life cycle - program estimation and planning, program feasibility assessments, and acquisition/system performance evaluation.

Supporting elements:
a. The focus of the measurement process shifts across these three types depending on life-cycle phase, program acquisition/development/maintenance strategies, and programmed tasks and activities
b. Different measurement constructs and analysis techniques are used to generate the required information

MT 19.1.2.3.2 Measurement analysis focuses on taking the measured IT parameter results and transforming them, through the use of various constructs, into information products that relate directly to one or more information needs

Supporting elements:
a. All information products are based on the measurement of key program/system attributes at a low level – these are called base measures
b. Base measures are systematically combined, using consistently defined relationships, to quantify an IT activity or product. The measurement result is then compared against established decision criteria, and presented as a measurement indicator
c. The measurement indicator conveys the measurement results to the decision maker - it usually compares the measured results to pre-established thresholds that determine the need for action
d. Integrated analysis combines multiple indicators and focuses on the cause and effect relationships inherent between IT performance parameters - integrated analysis helps to identify and correct performance factor inconsistencies

MT 19.1.2.3.3 Measurement derived information must be coupled with program context information to interpret the numbers correctly.

Supporting elements:
a. Measurement information products need to be understood and “usable” by both program and enterprise decision makers.
b. Decision makers must understand the measures presented to them and the associated data and analysis. They have to be able to evaluate the limitations of the measurement results.
c. Most program decisions are supported by multiple measures (tightly coupled attributes) and different types of information - there is no single measure that indicates IT program performance - there is no single number that indicates “good” or “bad”.
d. The decision maker may not always be able to make “fact-based” decisions - there are inherent limitations with every program environment.

Module 7 - Software Test and Evaluation (40-45 minutes)
1. Quality
Software quality assurance is a set of activities that occur throughout the entire life cycle that provide objective evidence to technical and management leadership that the program is evolving in a way that makes it likely the program will meet its software quality objectives.
ELO 24.1.1.1 Define the purpose of Software Quality Assurance (SQA)

MT1.1.1. SW Quality Assurance SQA is performed as an objective observer function for software development processes and outcomes (work products and events), providing confidence to management that the development is within the boundaries of its scope and plan, making headway toward the acquisition’s software quality goals.
ELO 24.1.1.2 Identify the components (activities and events) of an effective Software Quality Assurance (SQA) program

Reference: CMMI Level 2 (Repeatable Process)
The purpose of Software Quality Assurance is to provide management with appropriate visibility into the process being used by the software project and of the products being built.
Software Quality Assurance involves reviewing and auditing the software products and activities to verify that they comply with the applicable procedures and standards and providing the software project and other appropriate managers with the results of these reviews and audits.
The software quality assurance group works with the software project during its early stages to establish plans, standards, and procedures that will add value to the software project and satisfy the constraints of the project and the organization's policies. By participating in establishing the plans, standards, and procedures, the software quality assurance group helps ensure they fit the project's needs and verifies that they will be usable for performing reviews and audits throughout the software life cycle. The software quality assurance group reviews project activities and audits software work products throughout the life cycle and provides management with visibility as to whether the software project is adhering to its established plans, standards, and procedures.
Compliance issues are first addressed within the software project and resolved there if possible. For issues not resolvable within the software project, the software quality assurance group escalates the issue to an appropriate level of management for resolution.
This key process area covers the practices for the group performing the software quality assurance function. The practices identifying the specific activities and work products that the software quality assurance group reviews and/or audits are generally contained in the Verifying Implementation common feature of the other key process areas.

MT1.2.1. SW Quality Assurance has an established set of activities and events that are best practices and should be present in an effective quality program.
Software Quality Assurance Activities and Events
SQA is the process of evaluating the quality of a product and enforcing adherence to software product standards and procedures. It is an umbrella activity that ensures conformance to standards and procedures throughout the SDLC of a software product. There are a large number of tasks involved in SQA activities.
1. Formulating a quality management plan
1. Applying software engineering techniques
1. Conducting formal technical reviews
1. Applying a multi-tiered testing strategy
1. Enforcing process adherence
1. Controlling change
1. Measuring impact of change
1. Performing SQA audits
1. Keeping records and reporting

ELO 24.1.1.3 Identify examples of common defects injected into a software development during the various phases of lifecycle development

MT 1.3.1. Defects do not just exist in written code. Defects are injected at all phases of lifecycle development to include activities associated within user requirements, specifications, architectures, design, and code.
	Software Development Phase
	Percent of Defects Introduced

	Requirements
	20 percent

	Design
	25 percent

	Coding
	35 percent

	User Manuals
	12 percent

	Bad Fixes
	8 percent

ELO 24.1.1.4 Given a list of quality factors and their descriptions, match the term with its description

MT1.4.1. Software Quality factors are attributes of the software that improve the efficient use (capabilities provided) and impact the life-cycle costs of the software.
The ISO 9126-1 software quality model identifies 6 main quality characteristics, namely:
· Functionality
· Reliability
· Usability
· Efficiency
· Maintainability
· Portability
ELO 24.1.1.5 Given several common measures (e.g. Defect Density) used to track product and process quality in software development efforts, correctly interpret their meaning

MT 1.5.1. Although many consider defect density (the # of defects of a particular type found per unit of size – usually Equivalent Source Lines of Code for software code) as a primary measure of software quality, there are also others that provide insight to the quality of the software being developed.
1. Product Quality Metrics
A. Mean time to failure: Intrinsic product quality is usually measured by the number of “bugs” (functional defects) in the software or by how long the software can run before encountering a “crash.” In operational definitions, the two metrics are defect density (rate) and mean time to failure (MTTF). The MTTF metric is most often used with safety-critical systems such as the airline traffic control systems, avionics, and weapons. For instance, the U.S. government mandates that its air traffic control system cannot be unavailable for more than three seconds per year. In civilian airliners, the probability of certain catastrophic failures must be no worse than 10−9 per hour (Littlewood and Strigini, 1992). The defect density metric, in contrast, is used in many commercial software systems.
B. Defect density: Although seemingly straightforward, comparing the defect rates of software products involves many issues. The general concept of defect rate is the number of defects over the opportunities for error (OFE) during a specific time frame. Because failures are defects materialized, we can use the number of unique causes of observed failures to approximate the number of defects in the software. The denominator is the size of the software, usually expressed in thousand lines of code (KLOC) or in the number of function points. In terms of time frames, various operational definitions are used for the life of product (LOP), ranging from one year to many years after the software product’s release to the general market. Usually more than 95% of the defects are found within four years of the software’s release. For application software, most defects are normally found within two years of its release.
C. Customer problems Good practice in software quality engineering, however, also needs to consider the customer’s perspective. Assume that we are to set the defect rate goal for release-to-release improvement of one product. From the customer’s point of view, the defect rate is not as relevant as the total number of defects that might affect their business. Therefore, a good defect rate target should lead to a release-to-release reduction in the total number of defects, regardless of size. If a new release is larger than its predecessors, it means the defect rate goal for the new and changed code has to be significantly better than that of the previous release in order to reduce the total number of defects.
D. Customer satisfaction Customer satisfaction is often measured by customer survey data via the five-point scale: Very Satisfied, Satisfied, Neutral, Dissatisfied, Very Dissatisfied. Satisfaction with the overall quality of the product and its specific dimensions is usu-ally obtained through various methods of customer surveys.
2. In-Process Quality Metrics
A. Defect Density During Machine Testing Defect rate during formal machine testing (testing after code is integrated into the system library) is usually positively correlated with the defect rate in the field. Higher defect rates found during testing is an indicator that the software has experienced higher error injection during its development process, unless the higher testing defect rate is due to an extraordinary testing effort—for example, additional testing or a new testing approach that was deemed more effective in detecting defects.
B. Defect Arrival Pattern During Machine Testing Overall defect density during testing is a summary indicator. The pattern of defect arrivals (or for that matter, times between failures) gives more information. Even with the same overall defect rate during testing, different patterns of defect arrivals indicate different quality levels in the field.
C. Phase-Based Defect Removal Pattern The phase-based defect removal pattern is an extension of the test defect density metric. In addition to testing, it requires the tracking of defects at all phases of the development cycle, including the design reviews, code inspections, and formal verifications before testing. Because a large percentage of programming defects is related to design problems, conducting formal reviews or functional verifications to enhance the defect removal capability of the process at the front end reduces error injection. The pattern of phase-based defect removal reflects the overall defect removal ability of the development process.
D. Defect Removal Effectiveness Defect removal effectiveness (or efficiency) can be defined as follows: Defects removed during a development phase/ Defects latent in the product. Because the total number of latent defects in the product at any given phase is not known, the denominator of the metric can only be approximated (Defects removed during the phase + defects found later. The metric can be calculated for the entire development process, for the front end (before code integration), and for each phase.
E. Metrics for Software Maintenance When development of a software product is complete and it is released to the market, it enters the maintenance phase of its life cycle. During this phase the defect arrivals by time interval and customer problem calls (which may or may not be defects) by time interval are the de facto metrics. However, the number of defect or problem arrivals is largely determined by the development process before the maintenance phase. Not much can be done to alter the quality of the product during this phase. Therefore, these two de facto metrics, although important, do not reflect the quality of software maintenance. What can be done during the maintenance phase is to fix the defects as soon as possible and with excellent fix quality. Such actions, although still not able to improve the defect rate of the product, can improve customer satis-faction to a large extent. The following metrics are therefore very important:
1) Fix backlog and backlog management index
2) Fix response time and fix responsiveness
3) Percent delinquent fixes
4) Fix Quality

ELO 24.1.1.6 Identify characteristics of generic DoD software system domains (e.g. Platform IT, Command and Control, and Defense Business Systems), that might influence how each system is reviewed in a software quality program

MT1.6.1. Software quality assurance practices should be chosen to meet not just the program’s quality objectives. They should also be chosen with reference to the risks inherent in the type of system being built. Known primary risks include safety for PIT systems, security for C4ISR systems and privacy for DBS.
A. PIT systems – Safety, Response time
B. C4ISR systems – Security, interoperability
C. DBS systems – Privacy, interoperability

ELO 24.1.1.7 Given several process-focused and product-focused software quality assurance methods, describe how each assures quality in a software acquisition

MT 1.7.1. In DoD systems, software quality assurance methods primarily involve process observation and analysis, work product review, quality attribute analysis, process and product trends analysis, analysis of developer reports like static code analysis reports, and analysis of collected measures. An explicit test and evaluation function is used to measure targeted quality built in to the system.
A. Process Assurance - “…systematic activities providing evidence of the ability of the software process to produce a software product fit for use.”
· Unbiased feedback on process compliance (process audits)
· Early warning of risks
· Independent oversight
· SQA audit and reporting
· “Are we following established standards and procedures”
· Independent examination of records for process compliance
· Assessment and statistical process control analysis
· Causal Analysis and Defect Prevention

B. Product Assurance - “…the product performs as specified.”
· Embedded SQA processes to “build in” product quality
· Desk checking
· Walk-throughs
· Formal Inspections
· Joint Reviews
· Computer-based testing
· Identification and elimination of defects early in the lifecycle
· Independent test functions
· Product audits
· “Does the software product conform to set standards and is the project status accurate”
· Independent examination
· Manual or Automated depending on software lifecycle

ELO 24.1.1.8 Given a software acquisition scenario, recognize the preferred method for identifying and tracking defects

MT1.8.1. Software defect may seem like an easily definable term, but there are ways of defining it that change how it is interpreted.
Defect Density Measure = Defects(Failures)/Size of Software. Measures Product quality. Although seemingly straightforward, comparing the defect rates of software products involves many issues. To define a rate, we first have to operationalize the numerator and the denominator, and specify the time frame. The general concept of defect rate is the number of defects over the opportunities for error (OFE) during a specific time frame. Failures are defects materialized, we can use the number of unique causes of observed failures to approximate the number of defects in the software. The denominator is the size of the software, usually expressed in thousand lines of code (KLOC) or in the number of function points. Measuring size is quite variable. In terms of time frames, various operational definitions are used for the life of product (LOP), ranging from one year to many years after the software product’s release to the general market. Usually more than 95% of the defects are found within four years of the software’s release. For application software, most defects are normally found within two years of its release.

Defect rate from Customer point of view. Good practice in software quality engineering, however, also needs to consider the customer’s perspective. Assume that we are to set the defect rate goal for release-to-release improvement of one product. From the customer’s point of view, the defect rate is not as relevant as the total number of defects that might affect their business. Therefore, a good defect rate target should lead to a release-to-release reduction in the total number of defects, regardless of size. If a new release is larger than its predecessors, it means the defect rate goal for the new and changed code has to be significantly better than that of the previous release in order to reduce the total number of defects.

Customer Problem Metrics. Another product quality metric used by major developers in the software industry measures the problems customers encounter when using the product. For the defect rate metric, the numerator is the number of valid defects. However, from the cus-tomers’ standpoint, all problems they encounter while using the software product, not just the valid defects, are problems with the software. Problems that are not valid defects may be usability problems, unclear documentation or information, duplicates of valid defects (defects that were reported by other customers and fixes were available but the current customers did not know of them), or even user errors. These so-called non-defect-oriented problems, together with the defect problems, constitute the total problem space of the software from the customers’ perspective.
2. Verification and Validation
ELO 22.1.1.23 Identify what Independent Verification and Validation (IV&V) is.

MT 23.1 Independent means that the team is technically, financially, and managerially independent from the product developer.
MT 23.2 Verification is the iterative process that determines whether the product built meets the approved specification from the last stage. Did we build the product right?
MT 23.3 There is component validation and system validation. Did we build the right product? Validation is “system oriented” in that the functionality we test for should be the resultant functionality of the final system.

LP 23.1 Independent Verification & Validation (IV&V) is the systematic evaluation applied to any software activity to determine the accuracy, completeness, consistency and traceability to the approved software specification for that activity. It is performed by an agency (IV&V team) that is not responsible for developing the product or performing the activity being evaluated.
LP 23.2 Independent means that the process is performed by a separate IV&V team that is independent technically, financially and managerially from the product developer. The product developer is being evaluated by the IV&V team. The IV&V team does not have any members who are also members of the product development team.
LP 23.3 Verification is the iterative process of determining whether the outcome of selected steps of the Software Item (SI) development process fulfills the requirements outlined by previous steps.
The verification process determines readiness for the next stage of development. Specific issues are oriented around software development life-cycle entry and exit criteria. For example, verification checks that all software requirements from the Software Requirements Analysis stage are properly specified (correct, unambiguous, complete, etc.) before initiating the next stage of Software Preliminary Design. The term “verification” is focused at a software product of the system. Verification answers the question “Was this software product built correctly, per the specification of the previous stage?” Does our design trace to the approved requirements? Does our code trace to our design?
LP 23.4 Validation is the process of evaluating the functionality of a component (or the entire system) after software development for that component (or the entire system) has been completed. Validation answers the question, “Did we build the right product(s) (for the system)?” Validation occurs after software development for that product has been completed

ELO 22.1.1.24 Recognize the benefits of Independent Verification and Validation (IV&V) in T&E.

MT 24.1 IV&V provides early detection and correction of software errors, management insight into process and product risks, and objective evidence of compliance or noncompliance with program performance, schedule and budget requirements.
MT 24.2 IV&V reduces the risks of software applications not performing as required.
MT 24.3 IV&V ensures the program’s quality definition is baked into the software solution.
MT 24.4 IV&V ensures the accuracy, completeness, consistency and traceability of the documentation to the developed product.

3. Software Test Planning, Execution and Reporting
ELO 22.1.1.1 Recognize characteristics of DoD Test & Evaluation (T&E).
MT 1.1 T&E is the process by which a system or components are compared against requirements and specifications through testing. The test results are then evaluated to assess progress of design, performance, supportability, etc. Testing is a measured event. Evaluation is an analysis event.
MT 1.4 T&E is critical to DoD IT program acquisition as it accounts for 50 to 60% of program development costs.

ELO 22.1.1.2 Recognize characteristics of Software Testing.

MT 2.1 Software testing is a process of executing a program or application with the intent of finding the software defects (bugs).

MT 2.2 Software testing is the process of validating and verifying that a software program or application or product meets the business and technical requirements of the customer.

MT 2.3 After changing software, which happens a lot, the software tester must perform “Regression Testing” to ensure no additional software defects have been introduced. Regression testing is a type of software testing that verifies that the changes made to the software did not impact any of the connected software logic threads that were not changed.

LP 2.1 It is important to identify faults as early as possible in the software development process. The earlier faults are discovered, the easier and less expensive they are to correct.

LP 2.2 Since software is so easy to change, software managers are constantly testing software changes. When software logic is changed, it is easy for programmers to accidentally introduce new bugs into the software. Regression testing is used to test the links around the changed software to ensure all new and prior capabilities work properly after changes have been made.

ELO 22.1.1.3 Recognize characteristics of DoD Software Test Planning.

MT 3.1 Test planning ensures that the functionality as described in the war-fighter requirements and documented in the system specifications are achieved.

MT 3.2 Test planning ensures that the test results produce a comprehensive set of data that covers every aspect of software testing.

MT 3.3 Continuous test planning and testing occurs across the Life-cycle of a program.

MT 3.4 Test planning and testing is involved in every stage of the software life cycle.

MT 3.5 Test planning includes all critical risks to your program.

MT 3.6 It is impossible to test everything; focus on the Mission Critical Threads (MCT).
LP 3.1 Stages of testing include Software Unit Testing, SW Unit Integration & Testing, SI Qualification Testing, HI & SI Integration Testing, Subsystem Integration Testing and System Qualification Testing.
ELO 22.1.1.7 Recognize the Software Test & Evaluation (T&E) mission

MT 7.1 The software T&E mission has two primary objectives:
(1) Demonstrate performance of the whole software system
(2) Assist in fault detection and correction of faults
MT 7.2 There are four (4) primary ways to support the success of the software T&E mission:
(1) Your plans should include an incremental test strategy
(2) Identify and correct software defects as early as possible in the lifecycle
(3) Provide scientific based measures for progress and quality
(4) Provide data evaluation to support acquisition decisions

· Rationale: Two Objectives: Demonstration of performance; and assisting in the fault detection and correction.
· Software is generally a critical component of a larger system, so the specific software testing must be accomplished within context of the whole system. However, it can be of such risk and cost impact, it must be given appropriate priority and devoted resources. To minimize this risk, implement an incremental test strategy to identify resources and allow for a variety of test events which are diverse. This will provide confidence in the effectiveness of the test process.
· Identifying and correcting software errors early is essential for program success.
· Scientific based measures must be chosen, collected, and analyzed to clearly quantify software performance and its impact on system performance. As testers we support the development and production of this data.
· Finally, we need to evaluate our test results (measurement data). With the evaluated data we hope to shed some light by identifying risks and quantifying them. Decision makers need measurement results, or data evaluation, to measure progress and quality of work to date.

ELO 22.1.1.11 Identify the different types of software testing.

MT 11.1 There are two basic types of software testing, Human-based and Computer-based.

MT 11.2 Human-based Formal Inspections should be identified in your Statement of Work (SOW) as the preferred software test method.

MT 11.3 The best software test environment combines the use of Formal Inspections with White-box, Gray-box and Black-box testing. By combining these types of testing into your test environment, defects that are easily seen by the human eye and the ones that are tricky for humans to find can be found; this creates a more efficient defect and cybersecurity vulnerability discovery environment.

LP 11.1 Desk checking is the most basic and least productive type of human-based testing. In desk checking, suppliers (contractor or government) review the quality and correctness of their own work. This includes “informal peer reviews,” where co-workers look over each other’s work following the developer’s desk checking. Many errors are missed in desk checking because it is human nature to overlook your own mistakes. Desk checking, however, can be performed individually at any time and without the need for overhead associated with other more extensive human based testing techniques.

LP 11.2 Walk-throughs (Human-based Informal Inspections) occur when the author of the code makes a presentation of their work (e.g., software requirements, design, and code). This presentation is followed by an informal general discussion among the participants. Then, the presenter “walks through” the specific item being evaluated in detail. As the walk-through progresses, errors, suggested changes, and improvements are noted by the participants. Roles may be shared among the walk· through members. This method results in 30 to 40 percent defect removal.

LP 11.3 Formal Inspections (Also known as Fagan Inspections) are the most productive form of human-based testing. Formal inspections are led by a trained moderator impartial to the software product being "inspected." The moderator is not the author or creator of the item being reviewed. Defect resolution is mandatory, and rework is formally verified. As part of the inspection, a "reader" leads the inspection team through the software product in a comprehensive review. Formal records of inspection results are maintained and entry/exit criteria are strictly controlled. With such a highly disciplined approach, errors can be discovered early and resolved quickly. Because of this, Formal Inspections are the most productive form of human-based testing. This method has resulted in as much as 70 percent defect removal.

LP 11.4 Computer-Based testing executes the software application and attempts to identify defects. Computer-Based testing is performed after coding begins.

LP 11.5 There are three types of Computer-Based testing: White Box, Gray Box and Black Box testing.

LP 11.6 White-box testing (also known as clear box testing, glass box testing, transparent box testing, and structural testing) is a method of testing executable software with full knowledge of the internal structures or workings of an application. This gives our testers an advantage when testing for cybersecurity vulnerabilities because we can see exactly what is going on inside the program if attacked. White-box testing is primarily used during the Software Unit Testing phase to ensure each internal Software unit works as planned. Design features tested include boundary conditions for inputs, outputs achieved, interface design parameters and cybersecurity vulnerabilities at the unit level. White-box testing includes the use of Static Analysis tools.
NOTE: Software Units are the lowest functional software unit (SU) level programmed. An example of this level would be the “save” function in MS Word.
NOTE: Static Analysis tools are automated test applications that review the source code and paint a picture of the code’s structure. The code’s structure can tell you how easy it will be to support during the Operations and Support (O&S) Phase. In addition, the code’s structural picture can reveal cybersecurity vulnerabilities, like a back-door into the application.

LP 11.7 Gray-box testing is a combination of White-box and Black-box testing. Gray or Grey-box is used to describe this testing. Gray-box testing uses an understanding of detailed designs and architecture diagrams to test functionality. Modeling & Simulation (M&S) is an example of Gray-box testing where the application being tested is running (being modeled) within the simulation. Gray-box testing is best used for cybersecurity vulnerability analysis. Gray-box testing can simulate the knowledge an attacker might have based on programming language and other assumed design features. Gray-box testing allows testers to run automated and manual penetration tests against the target software application with greater knowledge than an attacker. This superior knowledge can result in more significant vulnerabilities being identified. Gray-box testing is typically used from the Software Unit Integration & Testing phase to the System Qualification Testing phase. Gray-box testing uses both Static Analysis tools and Dynamic test tools.

LP 11.8 Black-box testing is a software testing technique that focuses on the analysis of software functionality. The term Black-box means no knowledge of the underlying source code or architecture. Using Black-box and realizing that the Mission Critical Threads (DODAF OV-6c type scenarios) are the basis for most test scripts, testers attempt to find defects through executing the known capabilities needed. Black-box is usually the level of knowledge a cybersecurity threat has when attacking the target application. Black-box testing is typically used from the Software Unit Integration & Testing phase to the System Qualification Testing phase. Dynamic test tools can be used to help the tester during a Black-box test.
NOTE: Dynamic Analysis tools are used when the application is running in real time. The dynamic test tool sits in the background while the application is running, like a software debugger. The dynamic test tool looks for anomalies in code execution. A daily “Smoke Test” is an example of a dynamic analysis by a dynamic test tool (in this case the program’s compiler is the dynamic test tool).

LP 11.9 Computer-Based testing occurs during the following six (6) stages of software testing: Software Unit Testing, SW Unit Integration & Testing, SI Qualification Testing, HI & SI Integration Testing, Subsystem Integration & Testing, System Qualification Testing. The System Qualification phase includes Developmental T&E (DT&E) and Operational T&E (OT&E).

LP 11.10 Developmental T&E (DT&E) and Operational T&E (OT&E) are critical systems-level, computer-based test events.

LP 11.11 DT&E is a technical test structured to measure technical performance and verification of specifications (contract) compliance. The Program Manager (PM) is responsible for DT&E. DT&E is conducted by contractors or government suppliers and carried out in a lab environment.

LP 11.12 OT&E is a systems-level test that focuses on Operational Effectiveness and Operational Suitability. An independent Operational Test Agency (OTA) from each Service is responsible for OT&E. OT&E is conducted by the independent OTA with support from the war-fighters/user community and carried out in a relevant operational environment.

LP 11.13 Operational Effectiveness is the overall degree of mission accomplishment of a system when used by representative personnel in the environment planned or expected for. Operational employment of the system includes considering organization, doctrine, tactics, survivability, vulnerability, and threat (including countermeasures and nuclear threats).

LP 11.14 Operational Suitability is the measure of the ability of the intended users to use the system with its intended support system and resources. Operational Suitability addresses the degree to which a system can be placed satisfactorily in field use with consideration given to availability, compatibility, transportability, interoperability, reliability, wartime usage rates, maintainability, safety, human factors, manpower supportability, logistics supportability, natural environment effects and impacts, documentation, and training requirements.

ELO 22.1.1.12 Recognize the different types of software testing tools.

MT 12.1 Automated software testing is critical for testing large and complex DoD software applications. Tool support is very useful for repetitive tasks; the computer doesn’t get bored and will be able to exactly repeat repetitive tests without any mistakes.

MT 12.2 Here are some of the benefits of using automated testing tools. Test tools can:
· automatically verify key functionality
· do automated Regression Testing
· test interfaces
· test Graphical User Interfaces (GUI)
· provide scenario testing models for Mission Critical Threads (MCT)
· automate cloud services testing
· help test teams run large numbers of tests in a shorter period of time.
NOTE: Regression Testing is a type of software testing that verifies that previously developed and tested software still performs correctly after it was changed or interfaced with other software. One method is to use known test scripts of Mission Critical Threads (MCT) that worked successfully prior to the discovery and correction of the defect. Running these successful test scripts, you can see if anything else was broken due to the bug fix. This is called Regression Testing.

MT 12.3 Successful programs use Static and Dynamic Analysis tools in combination. The use of Static and Dynamic tools together help with Cybersecurity testing and identifying software sustainment weaknesses after the product has been deployed.
NOTE: Sometimes Static or Dynamic can find false-positives or false-negatives. By using both in combination with each other, the tester can better prevent false results.
NOTE: False Positives are results where the tool reports a possible vulnerability that in fact is not. An example could be the use of a Static Analyzer reporting a possible vulnerability with external data being passed. However, when a Dynamic Analyzer attempts to find the same vulnerability in an executable environment, the vulnerability does not exist; the actual external data, when passed and analyzed is not a security risk. Using both static and dynamic together better identify defects and security vulnerabilities.
NOTE: False Negatives are results that one tool says there are no vulnerabilities when in fact there is. This can happen when the tool has no knowledge of the runtime environment.

MT 12.4 The use of Static Analysis and Dynamic Analysis Tools should be put on contract to ensure COTS vendors provide a picture of their code for Government purposes (Security and Product Support).

LP 12.1 There are many types of automated testing tools. Here are five (5) Automated Test Tool types:
1. Test Management Tools: Manages test process and progress (Coverage management), requirements management (traceability), incident management and configuration management to name a few.
2. Static Testing Tools: Static testing tools examine the programmer documentation (e.g., code). Static testing tools include modelling, review process support (Formal Inspections), Static Analysis Tools.
3. Test Specification Tools: Manages software design and test data scripts.
4. Test execution and logging Tools: Automated Web testing, automated Graphical User Interface (GUI) testing, Unit Test Framework testing (Software Unit testing), test comparators, coverage measurement and security testing.
5. Performance and Monitoring Test tools use Dynamic Analysis Tools, Performance, load and stress-testing tools and monitoring tools.

LP 12.2 Static Analysis Tools. Static analysis tools allow you to paint a picture of the software’s source code. This picture will tell you how efficiently the code was constructed. This picture can also identify security issues with the software design.
Static Analysis is the analysis of computer software and related documentation that is performed without actually executing programs built from the software. Static Security Analysis is the analysis of computer software that is performed without actually executing programs to detect and report weaknesses that can lead to security vulnerabilities. Focuses on code quality among other factors. Use of automated tools is now mandated for DoD by Federal Law (Section 932, 2011 NDAA, and Section 933, 2013 NDAA).

LP 12.3 Dynamic Analysis Tools. Dynamic analysis tools allow you to observe the behavior of the object code (executable code). Dynamic Program Analysis is the analysis of computer software and related documentation that is performed by executing programs built from that software on a real or virtual processor. Dynamic Security Analysis is the analysis of computer software that is performed by executing programs to detect and report weaknesses that can lead to security vulnerabilities.

ELO 22.1.1.17 Recognize characteristics of Software Test Report (STR) management.

MT 17.1 Use a Priority Classification Scheme to manage STRs.

MT 17.2 A de facto standard is the old J-STD-016 which has a five level Priority Classification Scheme:
Priority 1: Prevents Mission Accomplishment or jeopardizes safety or other “critical” requirement
Priority 2: Adversely affect Mission Accomplishment or cost, schedule, performance or software support + no work-around exists
Priority 3: Adversely affect Mission Accomplishment or cost, schedule, performance or software support + a work-around exists
Priority 4: User/Operator or support inconvenience
Priority 5: All other problems

MT 17.3 Your Software Test Plan (STP) should plan out your test processes to identify, adjudicate and address STRs.

MT 17.4 There are automated tools that help the supplier perform the STR Management process.

MT 17.5 The PM needs to approve the appropriate priority classification scheme for their supplier’s Software Test Plan (STP).

LP 17.1 Software Test Report (STR) is also known as a Software Problem Report (SPR).
ELO 22.1.1.20 Identify software test issues and risks in building a Software Test Plan (STP) for a COTS/NDI only system.

MT 20.1 COTS/NDI unit level testing/component testing is generally impossible because we can’t see the source code (software units (functions and procedures))
MT 20.2 Component understanding of COTS depends mostly on vendor claims
MT 20.3 Documentation of many COTS products is not complete or robust
MT 20.4 Complex, non-standard (proprietary) interfaces abound in COTS
MT 20.5 Current COTS use may not match its original design environment
MT 20.6 Frequent market-driven releases of COTS complicate regression testing (Intelligent By-pass)
MT 20.7 For COTS, Market leverage may not exist to force vendor bug fixes
MT 20.8 Formal requirements documents as such generally not available
MT 20.9 Real-time performance may be marginal
MT 20.10 Robustness and reliability of many COTS products are generally lower when compared with custom code
MT 20.11 Higher COTS use in a system generally implies more difficult system level integration testing
MT 20.12 “Evaluation” of product suitability occurs long before formal testing (Is the product suitable for our requirements?)
MT 20.13 “Slip-streaming” is common making version numbers meaningless (Can’t rely on COTS version numbers to be precise)
MT 20.14 The decision to perform IV&V is a trade-off between politics, risks, cost, schedule, and performance.

Rationale: COTS software – can only do black box testing, unless government purchases the code.
 If Government owns the code, can do white box testing. Generally, too expensive to purchase and cannot be supported based on a ROI analysis.
Interoperability is a key risk factor for software.
Role the software will play (safety, software security risks, activities to be performed by the software, critical or high risk functions, technology maturity) will determine the level of (or whether to perform) IV&V. Whether to perform IV&V is a trade-off between cost, risk, schedule, and performance.
4. Regression Testing, Combined/Integrated Testing, OT&E
MT 1.3 There are three (3) distinct types of DoD T&E defined in statute or regulation: Developmental Test and Evaluation (DT&E), Operational Test and Evaluation (OT&E), and Live Fire Test and Evaluation (LFT&E). Developmental test and evaluation (DT&E) in a laboratory environment is an engineering tool used to reduce risk throughout the acquisition cycle. Operational test and evaluation (OT&E) is the actual or simulated employment, by typical users, of a system under realistic operational conditions. LFT&E is congressionally mandated system-level T&E to determine vulnerabilities and lethality characteristics.

Module 8 – Deployment and Support (35-40 minutes)
1. Limited Deployment and Full Deployment Decisions
The decision to enter production follows development and testing. For DoD, the production decision is normally broken into two DoD decisions: (1) Low-Rate Initial Production (LRIP), called Milestone C by DoD, or Limited Deployment for software systems; and (2) the Full-Rate Production or Full Deployment Decision, also for software systems.
An incrementally deployed software intensive system (Model 3) is characterized by the rapid delivery of capability through multiple acquisition increments, each of which provides part of the overall required program capability. Each increment may have several limited deployments; each deployment will result from a specific build and provide the user with a mature and tested sub-element of the overall incremental capability. Several builds and deployments will typically be necessary to satisfy approved requirements for an increment of capability. The identification and development of technical solutions necessary for follow-on capability increments have some degree of concurrency, allowing subsequent increments to be initiated and executed more rapidly.
2. Implementing the Product Support Strategy
ELO 4.1.1.10 Recognize that Open Systems Architecture (OSA) is a critical product support factor when developing a Product Support BCA.

MT10.1. Using OSA principles ensures best value for product support during the O&S phase from a software application architecture perspective.

ELO 4.1.1.11 Recognize that Intellectual Property (IP) is a critical product support factor when developing a Product Support BCA.
MT11.1. The Software Engineer ensures that the Intellectual Property (IP) Strategy provides the best value return for the government during the O&S phase.
ELO 4.1.1.12 Recognize which software development products are needed for successful product support.

MT12.1. The Software Engineer identifies which software support products are needed during the O&S phase and ensures they are accounted for in the Product Support BCA.

MT12.2. The following are critical software development products needed for the O&S phase of acquisition (list is not all inclusive): Compilers, Debuggers and other software tools used to create and maintain the products software. This also includes testing and training software.

3. Post-Deployment Software Support
Post-Deployment Software Support (PDSS): The management of the software development process and the implementation of a process that ensures software supportability are among two of the most difficult challenges facing the Program Manager in management of software-intensive systems. The Program Manager should effectively address the issues of software supportability, the software test environment, and other equipment, material, and documentation, including data rights that are required to provide PDSS for those end users identified in the SDP or in other documents similar to the Computer Resources Life Cycle Management Plan. (For more information on PDSS see MIL-HDBK-347). Successful PDSS planning should assist the Program Manager in controlling software life-cycle costs.
Describe the impact of using a typical defense unique software intensive program acquisition development cycle on software acquisition and sustainment costs.

a. Department of Defense (DoD) programs have traditionally focused on the software acquisition phase (initial procurement, development, production, and deployment) and largely discounted the software sustainment phase (operations and support) until late in the lifecycle. The costs of software sustainment are becoming too high to discount since they account for 60 to 90 percent of the total software lifecycle effort. Moreover, in an era where DoD new-start programs are being reduced in favor of prolonging legacy systems, significant software sustainment cost increases are themselves unsustainable. The growing expense and prolonging of legacy systems motivates the need for greater discipline and attention on defining and applying appropriate methods and technologies to improve sustainment capabilities and efficiencies.

b. Software sustainment involves coordinating the processes, procedures, people, information, and databases required to support, maintain, and operate software-reliant aspects of DoD systems. DoD software sustainment needs and practices are shaped by various trends, including
i. rapid performance advances driven by Moore’s Law and associated hardware innovations, which accelerate technology refresh cycles,
ii. the prevalence of commercial-off-the-shelf software technologies and practices, which commoditizes the market for software engineers with modern skills, but creates gaps for projects that need staff with expertise in older technologies,
iii. the need to adapt software to address diminishing manufacturing sources stemming from the loss of producers or suppliers of hardware used in DoD systems,
iv. the challenges of modernizing and recapitalizing legacy DoD systems in a constrained budget environment that emphasizes greater efficiency and productivity in defense spending, and
v. the repurposing of systems to meet new threats and increasing requirements for interoperability.
c. The confluence of these trends impacts the workload, risk, and cost of acquisition program sustainment processes and professionals. These trends also contribute to the growth in total ownership costs across program lifecycles.

d. Newer DoD systems rely more on software than older systems did, so the demands on software sustainment organizations are increasing as current generations of DoD systems transition from production to sustainment. For example, the percentage of avionics specification requirements involving software control has risen from approximately 8 percent of the F-4 in 1960 to 45 percent of the F-16 in 1982, 80 percent of the F-22 in 2000, and 90 percent of the F-35 in 2006. This growing reliance on software now affects most aspects of DoD systems, including mission data systems, radars/sensors, flight/engine controls, communications, mission planning/execution, weapons deployment, test infrastructure, program lifecycle management systems, and software integration labs.
e. Not only are we dealing with a growing software base, but also the constantly-evolving environment in which software runs. For example, although software does not wear out, firmware and hardware become obsolete, thereby requiring software modifications. Likewise, upgraded capability must be integrated into existing systems and software defects and performance bottlenecks must continually be identified, fixed, and optimized to provide full functionality. It should therefore not be surprising that the DoD expends an increasing amount of time and effort sustaining software, often much more than was originally anticipated due to uncertainties during initial program cost estimation. While programs can take funds from later phases to cover development overruns, the sustainment phase has nothing after it to prey upon but itself!
f. High software sustainment costs occur for various reasons. For example, functionality originally provided by hardware may be replaced by software (e.g., fly-by-wire), thereby increasing software sustainment costs. Periodic software upgrades and enhancements throughout the lifecycle of DoD systems may also result in unanticipated increases in sustainment costs. Moreover, costly and time-consuming effort is required by software maintainers to understand the original design and carefully make changes to avoid degrading the integrity of the design or negatively impacting key quality attributes. In addition, software scale and complexity are growing significantly to meet the expanded threat spectrum, which drives sustainment costs up.
g. As sustainment costs have increased, the DoD is struggling to support all its legacy systems. Economic strategies for understanding and addressing these rising costs are affected by a key difference between DoD weapon system platforms and the software running in those platforms (example of weapons systems platforms include the physical airframes, hulls, chassis, and their associated parts like engines, weapons, sensors, and computing/communication units). The DoD has historically viewed sustainment from a weapon-system-platform perspective—where physical manufacturing and handling wear-and-tear represent a significant expense. From this perspective, sustainment costs are primarily a function of the number of weapon system platforms and parts. The DoD has traditionally handled these burgeoning costs by shrinking its inventory (for example, by retiring and/or reducing the numbers of aging aircraft, ship, and vehicle platforms).
h. This traditional approach worked when sustainment costs were largely a function of weapon system platform and part manufacturing costs. In contrast, software sustainment has essentially no manufacturing or wear and tear expenses. As a result, software sustainment costs are primarily a function of the number of software variants. For example, a particular weapon system platform family (such as a class of ships, planes, or vehicles) may have scores of software variants reflecting different sensor, processing hardware, operating system, and network/bus configurations; different algorithms; and different security profiles allowed for use by customers from different countries. Sustaining all these variants impacts the time and effort required to assure, optimize, and manage system deployments and configurations throughout the lifecycle.
i. As software variability grows—as it inevitably does in legacy systems unless a concerted effort is made to rein it in—it becomes increasingly hard to avoid adding unnecessary variability, re-implementing variation mechanisms more than once, selecting incompatible or awkward variation mechanisms, and missing required variations. The DoD is therefore facing “sticker shock” since software sustainment costs are unlikely to decrease by shrinking its inventory alone since roughly the same level of software sustainment is still needed, regardless of whether there are 100 or 10,000 hardware platforms. What the DoD needs are different strategies for understanding and alleviating rising software sustainment costs—such as sustainment strategies based on managing software commonality and variability via software product lines.
j. In addition to the challenges above, the DoD also faces challenges with recruiting, developing, and retaining its software sustainment workforce. For example, although the DoD needs efficient and productive software sustainers, this specialty is often not viewed as exciting or innovative as green-field developments, so key research and development challenges remain unresolved. Effective sustainment also requires engineers who have expertise in older languages, operating platforms, and tools combined with deep domain and software architect knowledge. This combination tends to reside in more experienced members of the DoD workforce, so retaining and replenishing this cadre of software engineers is important.

Describe the impact of using a highly evolutionary acquisition lifecycle on Post-Deployment Software Support (PDSS).
· Depending on the system being delivered, there can be a significant number of variables associated with the incremental deliveries that can impact post-deployment software support. These variables are often context specific and need to be addressed up-front in the acquisition live cycle (e.g. acquisition strategy).
· Evolutionary acquisition is an acquisition strategy structured to deliver capability in increments, recognizing, up front, the need for future capability improvements. The objective is to balance needs and available capability with resources, and to put capability into the hands of the user quickly. The success of the strategy depends on phased definition of capability needs and system requirements, and the maturation of technologies that lead to disciplined development and production of systems that provide increasing capability over time. The impact on PDSS is largely determined on a well-reason the acquisition strategy that effectively addresses post-deployment software support. Software sustainment involves coordinating the processes, procedures, people, information, and databases required to support, maintain, and operate software-reliant aspects of DoD systems. How well this is done with respect to incremental deliveries needs to be addressed upfront in the acquisition lifecycle or the classical problems will arise.
· From an IT acquisition manager’s perspective, it is important to focus on identifying the cost of support and sources for sustainment in the program plan and associated support plans.

Estimated Continuous Learning Module Time: 4.75 – 5.25 hrs
34

image3.png
Per-ent

100 -

20 1 F1
P-4 F7
o4 1
1960 1968

1
1976

1
1984

B-2

1
1992

F-22

2000

image4.png
250%

200%

150%

100%

50%

0%

Average schedule
overrun

Average cost
overrun

Projects
completed
successfully

Programs Overrun of
cancelled original cost
estimate by at
least 90%

m 1994
= 2000

image5.png
|

s
2 —
—r
0
2004 2006 2008 2010 2012
TIME 84% 72% 79% 1% 4%
cost 56% 47% 54% 46% 59%

FEATURES 64% 68% 67% 74% 69%

image6.png
RELATIVE COST RANGE

2x—

1.5x—
1.25x—

0.8x—
0.67x—

0.5x—

0.25x—

PRELIMINARY

CONCEPT OF DESIGN

OPERATION SPECIFICATION
REQUIREMENTS DETAILED DESIGN ACCEPTED
SPECIRICATIONS SPE(RFICATION SOFTWARE

FEASIBILITY PLANS AND PRELIMINARY DETAILED DEVELOPMENT
REQUIREMENTS DESIGN DESIGN AND TEST

image1.emf

image2.emf

