[bookmark: _Toc444158967]Module 5.0 - Effect of Agile on the ENGINEERING and Test STAFF (Scott, Joe)
[bookmark: _Toc444158968]Overview
[bookmark: _Toc444158969]ELOs
ELO 5.1 - Identify how program technical requirements are managed in Agile contracting settings
ELO 5.2 - Identify how program baselines are managed in an Agile environment
ELO 5.3 - Recognize key factors for developmental testing success in an Agile environment
ELO 5.4 - Identify different ways that System Engineering Technical processes interact with Agile Software approaches
[bookmark: _Toc444158970]Assessments
MT - A requirements baseline that is at too low a level of abstraction is unproductive for an Agile contract setting (ELO 5.1)
MT - A capability-based Work Breakdown Structure makes developing and refining requirements in an Agile setting easier than using the more hardware-focused, but typical, component-based WBS (ELO 5.1)
LP – Agile projects gradually add detail to the configuration baselines (functional, allocated and technical) in each iteration instead of completing each baseline at a technical review. (ELO 5.2)
MT - Automated testing is a necessity, not an option, for any decent-sized Agile program (ELO 5.3)
MT – Program managers may choose to have systems engineers take on the role of the product owner. (ELO 5.4)
LP – Systems engineers can apply Agile methods and principles to their own approach to work products. (ELO 5.4)
[bookmark: _Toc444158971]Topic 5.1: Systems Engineering – Requirements (ELO 1, 2)
[bookmark: _Toc444158972]5.1.1: Flow of expressing requirements (Essential Scrum, Rubin 2013)
[bookmark: _Toc444158973]Using a user story to flesh out details of requirements
[bookmark: _Toc444158974]User story format: as a (user role) I want to (goal) so that (benefit)
	User stories are for conversation and communication—too detailed will hinder communication
	INVEST: independent, negotiable, valuable, estimatable, small (or sized appropriately), testable
		Independent: one user story should have as few dependencies as possible to others
		Negotiable: user story describes who, what and why, not the how
		Valuable: otherwise the user story doesn’t need to be implemented
		Estimatable: so that it can be assigned it to be worked in an iteration
		Small / Sized Appropriately: scope and detail to support work in the iteration (note – can be an “epic” user story but if so, scope and detail support work in the iteration through related user stories)
		Testable by pass/fail that support definition of done
[bookmark: _Toc444158975]	User stories trace vertically to high-level system capabilities through the stated goal and benefit
	Once assigned to an iteration, user stories will trace horizontally to scheduled development work efforts and verification through user testing and acceptance
5.1.2: Flow and configuration management of requirements, prioritization and releases

	User stories and epics are usually organized into features and releases (methods may vary)
	User stories are prioritized overall in the product backlog
User stories are selected for work in the next iteration based on priority and get assigned to the iteration backlog (sprint backlog)
	Release planning forecasts work across several upcoming iterations to plan for packages that deliver value to the end user at planned intervals

Suggested Content:
[image:]
[image:]
[bookmark: _Toc444158977]Topic 5.2: Systems Engineering – Technical Processes (ELO 2)
[bookmark: _Toc444158978]5.2.1: Approaches to managing interaction with Agile Software teams

[bookmark: _Toc444158979]Systems Engineers Acting as Agile Product Owner (Scrum specific) [SEI course content]
Product owner responsibilities that may be assigned to systems engineering staff:
· Write epics, user, and technical stories (requirements) that start the conversation with developers
· Work with end users, testers, and other stakeholders to establish Acceptance Criteria for the stories and epics
· Prioritize and rank order epics and stories
· Participate in release planning events that map the stories into implementation packages
· Establish Release Goals for each release that are objective and measurable
· Establish Iteration (or Sprint) goals that are objective and measurable
· Proactively monitor developer progress via physical or electronic Information Radiators
· Evaluate the satisfaction of Sprint and Release goals through attendance at Sprint and Release Reviews
· “Accept” the Release for further integration and system testing or delivery into a sandbox
· Answer (as often as daily) questions from developers to clarify their understanding of a story or its acceptance criteria
· Advocate for the product to business or operational management who are investing in the product
	
[bookmark: _Toc444158980]Systems Engineers Acting as Agile Systems Architect (is this SAFe specific?)
Source: http://www.agilearchitect.org/agile/role.htm (must be British)
Agile systems architecture responsibilities that may be assigned to systems engineering staff:
Understanding the requirements - identifying the stakeholders, helping to analyse the requirements and extracting those of architectural significance
Formulating the design - creating a solution structure which will meet the various requirements, balancing the goals and constraints on the solution,
Communicating the architecture - making sure that everyone understands the architecture. Different people have different viewpoints, so the architect has to present various views of the system appropriate to different audiences,
Supporting the developers – making sure that the developers are able to realise the architecture, by a combination of mentoring and direct involvement,
Verifying the implementation – ensuring the delivered system is consistent with the agreed architecture, and will meet the requirements
[bookmark: _Toc444158981]Systems Engineers Applying Agile Methods to Their Own Work
[image:]	Engineers can apply lessons learned from Agile software development to organizational processes and work products
[bookmark: _Toc444158982]5.2.2: Program baselines in an Agile setting
[bookmark: _Toc444158983]Technical reviews that establish and evolve program baselines
	Agile applies V-model Systems Engineering decomposition and realization steps in an incremental approach.
	Traditional V-model establishes the functional baseline once requirements are complete (System Requirements Review or System Functional Review).
	Traditional V-model establishes the allocated baseline at Preliminary Design Review and the product baseline at Critical Design Review.
	Reference V-model, dated 2014 – not sure if the configuration baseline terms have now changed in DAU-speak.
[image: https://dap.dau.mil/acquipedia/PublishingImages/AQPLEG/Systems%20Engineering%20Process%20Figure%204.jpg]
Agile approach completes requirements, design, implementation and user validation (usually not in the operational environment) all within the same iteration. Therefore, each iteration adds to the functional, allocated, and product baselines as it progresses.
[image:]Incremental delivery eliminates major-event analysis of each configuration baseline as it is developed and replaces it with continual management of configuration baseline.
[bookmark: _GoBack]
[bookmark: _Toc444158986]Topic 5.3: Integration and Testing (ELO 3)
[bookmark: _Toc444158987]5.3.1: Use of supplemental test strategy to compliment the high level program TEMP
[bookmark: _Toc444158988]Deal with Measures of Effectiveness for traceability
	High-level TEMP will describe how test planning will ensure MOEs are established during the flow of an iteration, for the user stories in scope of the increment
[bookmark: _Toc444158989]Integration approaches for DT/OT activities
	Operational testing strategy should reflect that smaller incremental releases generally involve lower risk and require less operational testing to reduce risk prior to release. Based on risk assessment OT may leverage DT data and conduct operational assessment of the system in operation.
[bookmark: _Toc444158990]5.3.2: Developmental testing and evaluation in an iterative approach
[bookmark: _Toc444158991]Cybersecurity staff involvement
Cybersecurity should be baked into the overall approach to the program; staffing approach should influence continual cyber involvement
[bookmark: _Toc444158992]Ensuring integrity of the definition of done – including cyber
Iteration reviews should leverage the definition of done to ensure that cyber is baked in.
Definition of done: [SEI content]
Definition of Done (DoD) is a Key Concept for a Product Owner
What is the Definition of Done (DoD)? Definition of Done is an explicit declaration of the completion criteria for some aspect of an Agile lifecycle. DoD can be applied to an individual artifact (e.g., a user story), a sprint (as a companion to the Sprint Goal), or a release. Why do we need a specific Definition of Done? One of the ways that Agile methods achieve the speed they are known for is that developers have confidence that when they are “done” with some task or artifact, it’s safe to move on to the next one. The explicit Definition of Done is a key contributor to enabling this confidence.
When is the Definition of Done established? The DoD is established prior to the work being done (for a User Story, DoD is established before the Product Backlog items are estimated; for a Release DoD is established prior to the completion of Release Planning, etc.) When do you determine that the Definition of Done has been met? Verifying that the DoD has been met depends on what DoD is being applied to. If DoD is being applied to an artifact, it is verified before the item is marked as “Done” in whatever Information Radiator the team is using to communicate status. If DoD is being applied to an Agile lifecycle phase, like the Sprint Goal, it would be determined during the review meeting that occurs at the end of the sprint or release. Other Notes on Definition of Done: There is no “universal” Definition of Done. However, a good definition of done should follow SMART rules: Specific, Measurable, Actionable, Relevant, and Timely. Usually the time is predetermined (e.g. your sprint timebox) Make the definition public and review it in between sprints, releases, etc. —reviewing the DoD as part of the Retrospective is a frequent approach, or including a review during the Sprint Planning Meeting.
[bookmark: _Toc444158993]Leverage multiple sources of evidence (unit testing, demos, traditional system testing)
[bookmark: _Toc444158994]5.3.3: Automated testing and automation support
Agile projects need automated testing (usually regression and unit testing) in order to support frequent integration builds and discover software defects as quickly as possible. Automated regression testing is key to success in an Agile effort.
Automated testing is complementary to other defect-finding disciplines such as peer reviews of design, measurement of code and branch coverage/glass box testing.
[bookmark: _Toc444158995]5.3.4: Need for Reaccreditation
[image:]
[bookmark: _Toc444158996]5.3.5: Cybersecurity recommendations
[image:]

image3.png

image4.jpeg

image5.png

image6.png

image7.png

image1.png

image2.png

