[bookmark: _Toc445322176][bookmark: _Toc445362519][bookmark: _Toc448824018]Module 6.0: Software development from existing solutions
[bookmark: _Toc445322177][bookmark: _Toc445362520][bookmark: _Toc448824019]Overview
[bookmark: _Toc445322178]ELOs
ELO 6.1 – List the steps of software development for adding capability to an existing COTS product.
ELO 6.2 – List the descriptive elements about DBS and business processes that are described in the Business Enterprise Architecture.
ELO 6.3 – List the most significant techniques to drive costs out of commercial off-the-shelf software solutions to business problems.

[bookmark: _Toc445322179]Assessments
ELO 6.1 –
LP – Most of the capability of a business system is often built around an existing software capability.
MT – The selection of software model should be based on whether user requirements are very likely to change and whether the user is prepared to work with the PM to implement the most valuable requirements.
ELO 6.2 –
LP – The BEA includes end-to-end processes and operational activities that describe business capabilities that an implemented system fulfills.
MT – DBS PMs must submit the operational activities that their system will fulfill to the BEA and also assess whether or not other systems in the BEA provide the same operational activities and could be leveraged to deliver the capability.
ELO 6.3 –
LP – PMs and functional SMEs work together to identify fits where the COTS solution meets the desired business capability and gaps where additional development and/or solutions are needed to fulfill the capability need.
MT – The amount of DoD customization beyond the out-of-the-box COTS package required to meet the business capability need is a major cost driver for a DBS.

[bookmark: _Toc448824024]Topic 6.1 Business Enterprise Architecture (ELO 6.2)
[bookmark: _Toc448824025]6.1.1 Enterprise and solution architectures
[source: http://dcmo.defense.gov/ProductsandServices/BusinessEnterpriseArchitecture.aspx]
The BEA is the enterprise architecture for the DoD Business Mission Area and reflects DoD business transformation priorities; the business capabilities required to support those priorities; and the combinations of enterprise systems and initiatives that enable those capabilities. It also supports use of this information within an End-to-End (E2E) framework.	Comment by image: Need a top-level content diagram for the BEA
The purpose of the BEA is to provide a blueprint for DoD business transformation that helps ensure the right capabilities, resources and materiel are rapidly delivered to our warfighters – what they need, when they need it, where they need it, anywhere in the world. The BEA guides and constrains implementation of interoperable defense business system solutions as required by the Section 2222 of Title 10 United States Code. It also guides information technology investment management to align with strategic business capabilities as required by the Clinger-Cohen Act, and supports Office of Management and Budget (OMB) and Government Accountability Office (GAO) policies.
BEA 10.0 aligns with DoD Architecture Framework (DoDAF) 2.0 naming conventions and is comprised of a set of integrated viewpoint products. The viewpoints display capabilities, activities, processes, data, information exchanges, business rules, system functions, services, system data exchanges, technical standards, terms, and linkages to Laws, Regulations and Policies (LRP).
The Strategic Management Plan (SMP), Functional Strategies as developed by the appropriate DoD Principal Staff Assistants and the Organizational Execution Plans (OEP) as developed by DoD Components are the drivers of BEA release content. The SMP sets the strategic direction for the department's business operations. The transformation effort guiding BEA development continues to focus on SMP alignment, providing tangible outcomes for a limited set of priorities, and developing architecture that is integrated, understandable and actionable.
[bookmark: _Toc448824026]6.1.2 BEA exploration and compliance
DBS program interaction with the BEA includes the following:
· Mapping the system to its related end-to-end processes and operational activities in the BEA
· Identifying gaps in the BEA if it is missing DoD processes or activities related to the system
· Searching the BEA to identify potential DoD systems that can provide some or all of the needed capability for the business system – either as alternatives for an AoA, or integration opportunities to save cost
[bookmark: _Toc448824027]Topic 6.2 Cost Control with Commercial off-the-shelf software
[bookmark: _Toc448824028]6.2.1 Market research
DBS program acquisition strategies must include market research to determine whether capability requirements can be met by existing implemented software Commercial off-the-shelf (COTS) or Government off-the-shelf (GOTS) solutions. In addition, conducting requests for information, industry days, and engaging with vendors in other forums allows programs to understand how vendor capabilities may be changing in a way that would benefit the program.
For example, several ERP software vendors once had modules that provided tools for writing contracts but did not have features in those tools that were geared to support government procurement regulations and requirements. Over time, many ERPs have added these features and other offerings in an effort to expand their public sector business.
[bookmark: _Toc448824029]6.2.2 Customization and configuration
Customization and configuration of a COTS tool, especially to interface to other DoD systems, significantly influences the cost of a defense business system. In concept, the 80/20 rule (Pareto principle) applies in that 80% of the capability for a business system can often be supplied by an existing software capability. To be successful, PMs must collaboration with functional business process owner to minimize customization through Business Process Re-engineering (BPR). To be effective when working with a COTS solution, BPR must happen both before the solution is selected to describe to-be business processes and also after the solution is selected to make maximum use of the out-of-the-box capabilities and limit customization and configuration.
[bookmark: _Toc448824030]6.2.3 Software size estimation and lifecycle cost estimation
Software programs generally approach estimation based on estimates of the projected size of the software and historical productivity metrics for similar software programs. Estimates can be based on projected counts of features, lines of code, function points, RICE objects (Reports, Interfaces, Conversions, Extensions), use cases, story points, or anything else that can be counted.
The clarity of the requirements for the DBS significantly influences the potential for variation in a cost estimate, both the initial acquisition cost and the total lifecycle cost. At the start of the program, the cost estimate will reflect the history of past DBS that have been implemented because there are no program actuals to consider. But once the program gets going, the fidelity of the estimate will improve because it will be based on actual productivity metrics for the specific system being build. Therefore, close collaboration between the PM and the functional community to reduce configuration and customization can begin to deliver should-cost savings as soon as the first pieces of the DBS are built and delivered into production.
6.2.4 COTS Considerations
The decision to acquire a business system centered around a COTS significantly influences subsequent decisions that will need to be made during implementation:
· Program leadership should avoid altering the commercial product in a DoD-specific way, especially at DoD cost. In certain circumstances, a commercial vendor may choose to add new capabilities in order to support DoD or other potential Federal customers. If so, the program will need to secure business arrangements to ensure the vendor will continue to support the new capability.
· Buying a COTS product means buying that product’s architecture, so programs must adapt around that architecture as they establish their open systems architecture. Best practices include [source: www.spmn.com]
· PROJECT INTEGRITY
· 1. ADOPT CONTINUOUS PROGRAM RISK MANAGEMENT
· 2. ESTIMATE COST AND SCHEDULE EMPIRICALLY
· 3. USE METRICS TO MANAGE
· 4. TRACK EARNED VALUE
· 5. TRACK DEFECTS AGAINST QUALITY TARGETS
· 6. TREAT PEOPLE AS THE MOST IMPORTANT RESOURCE
· CONSTRUCTION INTEGRITY
· 7. ADOPT LIFE CYCLE CONFIGURATION MANAGEMENT
· 8. MANAGE AND TRACE REQUIREMENTS
· 9. USE SYSTEM-BASED SOFTWARE DESIGN
· 10. ENSURE DATA AND DATABASE INTEROPERABILITY
· 11. DEFINE AND CONTROL INTERFACES
· 12. DESIGN TWICE, CODE ONCE
· 13. ASSESS REUSE RISKS AND COSTS
· PRODUCT STABILITY AND INTEGRITY
· 14. INSPECT REQUIREMENTS AND DESIGN
· 15. MANAGE TESTING AS A CONTINUOUS PROCESS
· 16. COMPILE AND SMOKE TEST FREQUENTLY
· Video clip – ERP fit/gap and how it affects re-use / architecture [Bob please add link]	Comment by image: scott add link
· Programs must enforce cybersecurity requirements for static and dynamic analysis of systems, include static analysis of the COTS software. The government may require the static analysis without actually owning the source code.
· Programs should consider business arrangements for eventual access to source code in the event that the program needs to purchase rights to it later. This may come into play if the government needs to modify it in a way the vendor will not, or if the vendor goes out of business.

[image:]
[bookmark: _Toc448824020][bookmark: _Toc447739131][bookmark: _Toc448824031]Topic 6.3 Software Development Methodologies (ELO 6.1)
6.3.1 Software Development based on Fit/Gap
Nearly all software development methodologies ensure that software is based on a set of software requirements, a design that meets those requirements, and then is built/configured and tested before being used in a production environment. Although different software development methodologies agree on the sequence of these activities (requirements to design to build/configure to test), they differ in the overall structure of how much of the software goes through each activity before continuing to the next activity.
The requirements and design effort for a business system beings includes comparing requirements against an existing software capability (usually COTS) to identify functions where the existing capability satisfies requirements (called “fits”) and functions where some software development will be required (called “gaps”). The software development effort will be focused on expanding capability around the core COTS product without modifying the product itself.
[image:]
[bookmark: _Toc448824023]6.3.2 Choosing the Best Fit for the Program
The choice of software development methodology should reflect the priorities of the program and the risks that the program manager must address. Traditional waterfall development often works best when detailed requirements are well understood and not likely to change across the program. On the other hand, iterative approaches are more suited when requirements are likely to change or when funding and schedule pressures may impact the program and the PM wants to ensure the highest priority features and releases are implemented with the available resources and time.
Most methodologies provide Program Managers with creative opportunities to drive down implementation costs under Better Buying Power. For example, PMs can leverage waterfall requirements if they are truly well understood and not likely to change to drive down contracting costs to implement the solution that meets those requirements. On the other hand, PMs can leverage iterative development to encourage requirements changes that reduce overall implementation cost by supporting an organizational business process change instead of a custom solution.
In his book, A Discipline for Software Engineering, Watts Humphrey writes ,
“This creative design process is complicated by the generally poor status of most requirements descriptions. This is not because the users or the system’s designers are incompetent but because of what I call the requirements uncertainty principle: For a new software system, the requirements will not be completely known until after the users have used it.
The true role of design is thus to create a workable solution to an ill-defined problem. While there is no procedural way to address this task, it is important to establish a rigorous and explicit design process that can identify and help to resolve the requirements uncertainties as early in the developmental process as possible.” 6
[source: Humphrey, Watts. A Discipline for Software Engineering. Boston, Mass.: Addison-Wesley Professional, 2006.]
This requirements uncertainty principle is generally seen as a cornerstone concept of iterative development. The requirements uncertainty principle further supports the concepts that knowledge-based projects are best managed and developed incrementally, and in small batches. How requirements are translated into functional capability and by who remains a vital questions that organizations need to answer.

6.3.3 Sustainment Considerations
Although the same principles for software development applies to programs in sustainment, there are several differences in a sustainment program’s approach. For example, the core COTS product is already well known and the original gaps have already been addressed. The sustainment activity focuses on smaller changes to address emerging requirement for the system. As always, the choice of software development method appropriate to sustain the system will depend on the scope and understanding of the emerging requirements.

image1.png

image2.png

