[bookmark: _Toc444158967]Module 5.0 - Effect of Agile on the ENGINEERING and Test STAFF (Scott, Joe)	Comment by Joe Cooke: Reformatted slightly, please continue with this format update

Format guidance:
Heading 1 = Module (X.)
Heading 2 = Topic (X.X)
Heading 3 = Subtopic (X.X.X)
Heading 4 = Subtopic division (no number)
Heading 5 = Heading for collection of talking points within subtopic division if necessary

General comments: Need to start flowing the story with an organized set of talking points/discussion. The contractor will need the text discussion to decide how best to communicate the story and decide what graphics are best to use. Add graphics as you wish, but they are only to further support your text. Good work so far. Still some heavy lifting to do.
[bookmark: _Toc444158968]Overview
[bookmark: _Toc444158969]ELOs
ELO 5.1 - Identify how program technical requirements are managed in Agile contracting settings
ELO 5.2 - Identify how program baselines are managed in an Agile environment
ELO 5.3 - Recognize key factors for developmental testing success in an Agile environment
ELO 5.4 - Identify different ways that System Engineering Technical processes interact with Agile Software approaches
[bookmark: _Toc444158970]Assessments
MT - A requirements baseline that is at too low a level of abstraction is unproductive for an Agile contract setting (ELO 5.1)
MT - A capability-based Work Breakdown Structure makes developing and refining requirements in an Agile setting easier than using the more hardware-focused, but typical, component-based WBS (ELO 5.1)
LP – Agile projects gradually add detail to the configuration baselines (functional, allocated and technical) in each iteration instead of completing each baseline at a technical review. (ELO 5.2)
MT - Automated testing is a necessity, not an option, for any decent-sized Agile program (ELO 5.3)
MT – Program managers may choose to have systems engineers take on the role of the product owner. (ELO 5.4)
LP – Systems engineers can apply Agile methods and principles to their own approach to work products. (ELO 5.4)
[bookmark: _Toc444158971]Introduction
The program office technical team will recognize Agile concepts as an adaptation of the work they normally do with adjustments for an iterative approach. Although much of the work will stay the same, the sequencing of the work will change significantly. The engineering and test staff will engage in frequent re-prioritization to ensure that the work being performed in each iteration will provide the most value to the program. Engineering and test staff will directly influence the keys to success for the development effort, as they always have, but in ways they may not have been able to before.
Topic 5.1: Systems Engineering – Requirements (ELO 1, 2)	Comment by Suzanne Miller: I’ve suggested several edits that orient the text more to the Program Office engineers. Use what makes sense, delete the rest!
[bookmark: _Toc444158972]5.1.1: Flow of expressing requirements (Essential Scrum, Rubin 2013)	Comment by Suzanne Miller: Is the level of detail expected? This seems too detailed to me….
[bookmark: _Toc444158973][bookmark: _GoBack]Using a user story to flesh out details of requirements
Most Agile programs use user stories (user-for operator-facing functions, or technical-for non-functional product attributes) to describe requirements from the user’s perspective in a conversational format. They express a desired business (in DoD, this is often focused on operational) value at a level of granularity that matches what the user needs to accomplish. The user story format helps provide just enough definition about the user’s need to understand how to prioritize it among other user stories and start the conversation about the requirement when it comes time to design, build and test the capability in more detail in an iteration. Agile methodologies ensure that the implementation team will have access to the user when they need more conversation about specific details.

[bookmark: _Toc444158974]User story format: as a (user role) I want to (goal) so that (benefit)
Traditional requirements specifications often use detailed “system shall” statements like, “The system shall allow an authorized user to transfer money from one of the user’s bank accounts to another” and “The system shall notify the user when transferring funds out of a savings account that exceeding the monthly number of transfers will lead to a maintenance fee.” A user story might say: “As an account holder, I want to manage the distribution of funds across my banking accounts so that I can earn interest whenever I can and avoid maintenance fees.

	User stories are for conversation and communication—too detailed will hinder communication
User stories are intended for conversation and communication without documenting every single detail that needs to be implemented in the software. Putting too much detail into each user story—or creating too many user stories to ensure every detail gets covered—will actually hinder communication. With too much detail, the implementation team and the user spend more time on refining the documentation of the user story instead of on understanding what needs to be done and getting it done.
Agile teams collect user stories at different levels of business value to the organization. Some user stories will be just the right size for the implementation team to define, build and test groups of them in a single iteration. Other user stories—often called epics—may depict the business at a higher level of abstraction, supported by related user that describe the user interaction. Large Agile projects often organize user stories around these epics and the product features that will be delivered to the user. The organization of user stories, features and epics will vary by Agile project. Very complex weapon systems, for example, will have a tiered structure of multiple layers to account for the communication that needs to occur across different stakeholder groups. If using a scaling framework like SAFe (Scaled Agile Framework), the breakdown would be Business or Enabling Epics, Capabilities, Features, and Stories.
Agile teams often keep user stories at a higher level of abstraction when they are not very high on the priority list for implementation. Spending effort to collect more detail on these user stories would take away effort from working on the user stories that need more detail for the current or the next iteration. This is probably the biggest difference in requirements management for a program office. The practice of only detailing the stories that will be implemented in the near term makes the overall requirements list for the program look disjointed – many of the longer term requirements will not have much detail at all, while those being implemented in the next couple of iterations will be at much greater levels of detail.

	INVEST: independent, negotiable, valuable, estimatable, small (or sized appropriately), testable
		Independent: one user story should have as few dependencies as possible to others
		Negotiable: user story describes who, what and why, not the how
		Valuable: otherwise the user story doesn’t need to be implemented
		Estimatable: so that it can be assigned it to be worked in an iteration
		Small / Sized Appropriately: scope and detail to support work in the iteration (note – can be an “epic” user story but if so, scope and detail support work in the iteration through related user stories)
		Testable by pass/fail that support definition of done
Bill Wake [Wake, William C. 2003 “INVEST in Good Stories, and SMART Tasks.”] uses the INVEST acrostic to describe best practices for developing good user stories.
Independent user stories have as few dependencies as possible on other user stories so that they can be described and delivered separately.
Negotiable user stories describe the who, what and why of the business need without prescribing how the business need must be bet. That way, the implementation team and the user can negotiate how the need will be met in a way that delivers the best business value for the effort on the user story. Adding in the who and the why to a requirement is a big shift from traditional “shall statements” in most DoD specifications. Adding the who and the why provides an opportunity for the Program Office to help prioritize implementation of requirements in a way that is different from working from apparently equivalent requirements in a detailed specification.
Valuable user stories describe a need that will provide business/operational value. If a user story doesn’t provide value, it should be taken out scope of the project; the sooner, the better. This has never been a systematic practice in traditional acquisition. To take advantage of prioritizing requirements in a way that could result in requirements being taken off the contract as the learning about the system implementation accelerates, the Program Office needs more than engineering skill. They also need contract and oversight practices that don’t create barriers for requirements adjustment.
Estimatable user stories have enough description in them that the implementation can estimate the level of effort required to clarify, design, build and test a solution to the business need. Agile teams often use story points to estimate the complexity of a user story. Story point estimates can useful for other activities, such as measuring productivity and planning future work.
Small (or sometimes Sized Appropriately) user stories ensure the scope and detail of the user story support the work. User stories in scope of the next iteration need to have a level of detail that will support the upcoming clarification, design, build and test efforts. Meanwhile, an epic may be larger in scope but should still be sized appropriately to be useful for organizing the user stories. Looking at story points across all the user stories may help the team identify when some user stories with high or low story points might be worth a second look to refine or reorganize.
Testable user stories provide the implementation team and the user with clear pass/fail criteria that allow the team to know that the user story meets the definition of done.

[bookmark: _Toc444158975]	User stories trace vertically to high-level system capabilities through the stated goal and benefit
	Once assigned to an iteration, user stories will trace horizontally to scheduled development work efforts and verification through user testing and acceptance
Like traditional requirements statement, user stories trace back to high-level system capabilities and forward to test and validation artifacts that confirm pass/fail implementation. Also, managing the project by a capability-based work breakdown structure (WBS) allows user stories to trace to scheduled effort in the program’s integrated master schedule.
5.1.2: Flow and configuration management of requirements, prioritization and releases

	User stories and epics are usually organized into features and releases (methods may vary)
	User stories are prioritized overall in the product backlog
User stories are selected for work in the next iteration based on priority and get assigned to the iteration backlog (sprint backlog)
	Release planning forecasts work across several upcoming iterations to plan for packages that deliver value to the end user at planned intervals

Suggested Content:
[image:]
[image:]
[bookmark: _Toc444158977]Topic 5.2: Systems Engineering – Technical Processes (ELO 2)
[bookmark: _Toc444158978]5.2.1: Approaches to managing interaction with Agile Software teams

[bookmark: _Toc444158979]Systems Engineers Acting as Agile Product Owner (Scrum specific) [SEI course content]
Product owner responsibilities that may be assigned to systems engineering staff:
· Write epics, user, and technical stories (requirements) that start the conversation with developers
· Work with end users, testers, and other stakeholders to establish Acceptance Criteria for the stories and epics
· Prioritize and rank order epics and stories
· Participate in release planning events that map the stories into implementation packages
· Establish Release Goals for each release that are objective and measurable
· Establish Iteration (or Sprint) goals that are objective and measurable
· Proactively monitor developer progress via physical or electronic Information Radiators
· Evaluate the satisfaction of Sprint and Release goals through attendance at Sprint and Release Reviews
· “Accept” the Release for further integration and system testing or delivery into a sandbox
· Answer (as often as daily) questions from developers to clarify their understanding of a story or its acceptance criteria
· Advocate for the product to business or operational management who are investing in the product
	
[bookmark: _Toc444158980]Systems Engineers Acting as Agile Systems Architect (is this SAFe specific?)	Comment by Suzanne Miller: No, not SAFe specific, but included in SAFe concepts
Source: http://www.agilearchitect.org/agile/role.htm (must be British)
Agile systems architecture responsibilities that may be assigned to systems engineering staff:
Understanding the requirements - identifying the stakeholders, helping to analyse the requirements and extracting those of architectural significance
Formulating the design - creating a solution structure which will meet the various requirements, balancing the goals and constraints on the solution,
Communicating the architecture - making sure that everyone understands the architecture. Different people have different viewpoints, so the architect has to present various views of the system appropriate to different audiences,
Supporting the developers – making sure that the developers are able to realise the architecture, by a combination of mentoring and direct involvement,
Verifying the implementation – ensuring the delivered system is consistent with the agreed architecture, and will meet the requirements
[bookmark: _Toc444158981]Systems Engineers Applying Agile Methods to Their Own Work
[image:]	Engineers can apply lessons learned from Agile software development to organizational processes and work products
[bookmark: _Toc444158982]5.2.2: Program baselines in an Agile setting (needs major work)
[bookmark: _Toc444158983]Technical reviews that establish and evolve program baselines	Comment by Kevin McKenna: Maybe I don’t understand exactly what is meant by “technical reviews,” but I would think a program baseline has long since been established once a technical review takes place. I agree with the idea of the program baseline evolving though.
	Agile applies V-model Systems Engineering decomposition and realization steps in an incremental approach.
	Traditional V-model establishes the functional baseline once requirements are complete (System Requirements Review or System Functional Review).
	Traditional V-model establishes the allocated baseline at Preliminary Design Review and the product baseline at Critical Design Review.
	Reference V-model, dated 2014 – not sure if the configuration baseline terms have now changed in DAU-speak.
[image: https://dap.dau.mil/acquipedia/PublishingImages/AQPLEG/Systems%20Engineering%20Process%20Figure%204.jpg]
Agile approach completes requirements, design, implementation and user validation (usually not in the operational environment) all within the same iteration. Therefore, each iteration adds to the functional, allocated, and product baselines as it progresses.
[image:]Incremental delivery eliminates major-event analysis of each configuration baseline as it is developed and replaces it with continual management of configuration baseline.
[bookmark: _Toc444158985]Resource: Lean Engineering reference	Comment by Craig Smith: I think this moved to Section 2

[bookmark: _Toc444158986]Topic 5.3: Integration and Testing (ELO 3)
[bookmark: _Toc444158987]5.3.1: Use of supplemental test strategy to compliment the high level program TEMP
[bookmark: _Toc444158988]Deal with Measures of Effectiveness for traceability
	High-level TEMP will describe how test planning will ensure MOEs are established during the flow of an iteration, for the user stories in scope of the increment
[bookmark: _Toc444158989]Integration approaches for DT/OT activities
	Operational testing strategy should reflect that smaller incremental releases generally involve lower risk and require less operational testing to reduce risk prior to release. Based on risk assessment OT may leverage DT data and conduct operational assessment of the system in operation.
[bookmark: _Toc444158990]5.3.2: Developmental testing and evaluation in an iterative approach
[bookmark: _Toc444158991]Cybersecurity staff involvement
Cybersecurity should be baked into the overall approach to the program; staffing approach should influence continual cyber involvement
[bookmark: _Toc444158992]Ensuring integrity of the definition of done – including cyber
Iteration reviews should leverage the definition of done to ensure that cyber is baked in.
Definition of done: [SEI content]
Definition of Done (DoD) is a Key Concept for a Product Owner
What is the Definition of Done (DoD)? Definition of Done is an explicit declaration of the completion criteria for some aspect of an Agile lifecycle. DoD can be applied to an individual artifact (e.g., a user story), a sprint (as a companion to the Sprint Goal), or a release. Why do we need a specific Definition of Done? One of the ways that Agile methods achieve the speed they are known for is that developers have confidence that when they are “done” with some task or artifact, it’s safe to move on to the next one. The explicit Definition of Done is a key contributor to enabling this confidence.
When is the Definition of Done established? The DoD is established prior to the work being done (for a User Story, DoD is established before the Product Backlog items are estimated; for a Release DoD is established prior to the completion of Release Planning, etc.) When do you determine that the Definition of Done has been met? Verifying that the DoD has been met depends on what DoD is being applied to. If DoD is being applied to an artifact, it is verified before the item is marked as “Done” in whatever Information Radiator the team is using to communicate status. If DoD is being applied to an Agile lifecycle phase, like the Sprint Goal, it would be determined during the review meeting that occurs at the end of the sprint or release. Other Notes on Definition of Done: There is no “universal” Definition of Done. However, a good definition of done should follow SMART rules: Specific, Measurable, Actionable, Relevant, and Timely. Usually the time is predetermined (e.g. your sprint timebox) Make the definition public and review it in between sprints, releases, etc. —reviewing the DoD as part of the Retrospective is a frequent approach, or including a review during the Sprint Planning Meeting.
[bookmark: _Toc444158993]Leverage multiple sources of evidence (unit testing, demos, traditional system testing)
[bookmark: _Toc444158994]5.3.3: Automated testing and automation support
Agile projects need automated testing (usually regression and unit testing) in order to support frequent integration builds and discover software defects as quickly as possible. Automated regression testing is key to success in an Agile effort.
Automated testing is complementary to other defect-finding disciplines such as peer reviews of design, measurement of code and branch coverage/glass box testing.
[bookmark: _Toc444158995]5.3.4: Need for Reaccreditation
[image:]
[bookmark: _Toc444158996]5.3.5: Cybersecurity recommendations
[image:]

[bookmark: _Toc445322176][bookmark: _Toc445362519]Module 6.0: Effects of Agile on Pre-Contract Award (Heather, Scott)	Comment by Joe Cooke: Reformatted slightly, please continue with this format update

Format guidance:
Heading 1 = Module (X.)
Heading 2 = Topic (X.X)
Heading 3 = Subtopic (X.X.X)
Heading 4 = Subtopic division (no number)
Heading 5 = Heading for collection of talking points within subtopic division if necessary

General comments: Need to start flowing the story with an organized set of talking points/discussion. The contractor will need the text discussion to decide how best to communicate the story and decide what graphics are best to use. Add graphics as you wish, but they are only to further support your text. Good work so far. Still some heavy lifting to do.

Specific comment: I’ve had problems understanding how this module is organized. Recall that this is only a 30-40 story. Let me know if you want some help organizing this. A separate meeting with the group may be useful to discuss.
[bookmark: _Toc445322177][bookmark: _Toc445362520]Overview
[bookmark: _Toc445322178]ELOs
ELO 6.1 - Identify pre-award characteristics of an acquisition strategy that allows for Agile solicitations
ELO 6.2 - Recognize technical aspects that contribute to the evaluation of bidders on an Agile RFP
ELO 6.3 - Identify the benefits and risks associated with various contract type(s) in an Agile environment
[bookmark: _Toc445322179]Assessments
MT - Make acquisition strategy language to allow for agile (ELO 1)
MT - Determining the contract type should be based on the understanding of system context, not the use of Agile approaches (ELO 1)
LP – Evaluate that the contractor has a logical approach for execution that accommodates Agile (ELO 2)
LP - Both sides need to understand Agile risks and associated mitigations (ELO 3)
MT - The Contract is only as good as the contracting relationship, leadership must foster environment for good and effective contract management in Agile environment (ELO 3)
MT - The contract type is not as important as incremental delivery and incremental review (ELO 3)
[bookmark: _Toc445322180][bookmark: _Toc445362521]Topic 6.1: Writing Acquisition Strategies and RFP’s to accommodate Agile philosophy (ELO 1)	Comment by Heather Smoot: Do we want to have 2 major subtopics (Acq Strats and RFPs) and have the others be under those, or keep it as is? 	Comment by Joe Cooke: I agree that may be this should be separated. You are the SME so what do you recommend. The story underneath is not congruent.

Under types of Acq. Strategies there is only one. 	Comment by Heather Smoot: Do we want to have 2 major subtopics (Acq Strats and RFPs) and have the others be under those, or keep it as is?
[bookmark: _Toc445322181][bookmark: _Toc445362522]6.1.1: Types of Acq. Strategies
[bookmark: _Toc445322182]Software Development as a Service (SDAAS)	Comment by Joe Cooke: Would like see the story we’re telling develop further into talking points/discussions. This is a subtopic division. Do the divisions support the subtopic and help organize the story? Under each subtopic division do the talking points say what we want to say?
Means to explicitly frame a software contract
· Includes service level agreement and other elements that are not as common in software product contracts.
It puts the technical baseline squarely in the lap of the government
· Allows for flexibility in the plan of efforts
· Government owns the agile backlog
· Contractor bids skilled labor and environment to meet the agile requirements
REFERENCE: http://prezi.com/5jrm2yxj5rjn/?utm_campaign=share&utm_medium=copy&rc=ex0share

[bookmark: _Toc445322183]Product focus
· Acquisition Strategy for agile is focused on getting capabilities to the user quickly rather than waiting for the final system [2]. (SOURCE:MITRE, www.mitre.org/publications)
· Program acquisition strategy may reflect a contract approach that can be constructed to support short Agile development timelines
· Both Agile and traditional waterfall development product focus must communicate a high-level strategy, requirements, and vision for the acquisition
· Program Strategies for product development must satisfy statutory and regulatory information requirements per Department of Defense (DoD) Instruction 5000.02, irrespective of agile or waterfall approach
· Agile approach can be used to address many risks on a program

Sample Integrated Program Team Responsibilities for Modular Approaches	Comment by Maya Jackson: Need to decide if this should be included and if so is this the correct section?	Comment by Kevin McKenna: Not sure this belongs in this course. Maybe ACQ101?	Comment by Joe Cooke: Can we make this more specific to the Agile environment?
	Acquisition
Step8
	Mission Focus
	Acquisition Focus
	IT Focus
	Budget Focus

	Describe the problem
	Identify congruent problems in agency. Identify foundational elements to the problem. Prioritize the problems. Build the business case.
	Identify similar problems in the agency. Identify how other parts of the agency are affected by the problem.
	Complete the alternative analysis, cost benefit analysis and capital planning procedures. Identify the projects in the IT Dashboard.
	Identify outlays addressing problems in the agency. Look for opportunities to aggregate the buying power.

	Examine public-sector and private- sector solutions
	Consider how other agencies have addressed this
problem. Consider how
the industry has addressed this problem.
	Collect market research on this problem. Look for opportunities to buy from other agencies instead of making a separate award.
	Target “Shared First” and
9
“Future Ready” capabilities
already in place. Reference the Enterprise Architecture for the range of solutions.
	Develop price analysis models for the different types of solutions.

	Describe the work
	Consider the longer- term strategy. Identify near-term, actionable goals to achieve the strategy. Identify 6- month targets.
	Develop an acquisition strategy to support the near and long-term goals using a modular
acquisition approach.
	Identify the work in a generic manner so that other parts of the agency can leverage it. Plan to develop in projects or increments no longer than 6 months and re-plan.
	Reconcile the work with the price model and refine each.

	Consider how to measure and manage performance
	Make sure the IPT is delivering new features and capabilities.
	Tie contractor payment, exercise of options and follow- on orders or contracts with successful contractor performance.
	Review this investment’s
performance in the agency
10
TechStat process .
	Monitor cost and schedule performance, obligations and actual costs.

	Select the right contractor
	Develop the Technical Evaluation Report and advise the Contracting Officer.
	Make the selection(s).
	Validate that the offeror’s approach and experience are likely to deliver in a modular fashion. In the technical evaluation, identify inconsistencies with the agency’s Enterprise Architecture.
	Provide price analysis support to the Contracting Officer.

	Manage performance
	Invest in developing high-performing IPTs. Participate with the developers weekly or daily, and test new features and capabilities consistent with the Acquisition Plan. Plan what is needed in the next project.
	Invest in developing high-performing IPTs. Receive performance metrics consistent with every project or increment, take action when necessary.
	Invest in developing high- performing IPTs. Push new technology advances into the planning of successive projects.
	Invest in developing high-performing IPTs. Consider the balance between capital expenditure and operating expenditure and achieve the mix that is right for the agency.

 SOURCE: https://www.whitehouse.gov/sites/default/files/omb/procurement/guidance/modular-approaches-for-information-technology.pdf
Incentives tied to the contract could be different
· Incentives classically tied in traditional/waterfall development are likely not synonymous with those needed in an agile environment to successfully motivate the contractor
[bookmark: _Toc445322184][bookmark: _Toc445362523]6.1.2: Level of involvement of the Govt
[bookmark: _Toc445322185]Program Office to monitor technical effort
Agile requires dedicated government involvement throughout the entire development process
· Increased frequency of Govt involvement to ensure requirements are met
· A close partnership between users and developers is critical to the success of defense acquisition programs and is a key tenet of Agile
· Program office involvement enhances the ability to communicate with stakeholders on status of meeting requirements
[bookmark: _Toc445322186]Government developer
· Integration handoffs is key
[bookmark: _Toc445322187][bookmark: _Toc445362524]6.1.3: Applying flexibility within the acquisition life cycle to accommodate agile approaches when applicable	Comment by Heather Smoot: Could this be moved to an intro section for acq strats instead of separate subtopic?
[bookmark: _Toc445322188][bookmark: _Toc445362525]6.1.4: allowing for Agile Philosophies in RFP’s (ELOs 1,2) 	Comment by Maya Jackson: Will work to add 1-2 specific statements to each wrt to RFP’s
· [bookmark: _Toc445322189]Allowing for incremental technical review
· [bookmark: _Toc445322190]Level of detail of work effort – too detailed doesn’t work
· [bookmark: _Toc445322191]Frequency and detail of CDRLs - too detailed doesn’t work (should reflect agile principles)
· [bookmark: _Toc445322192]Flexible prioritization of release contents
· [bookmark: _Toc445322193]Allowing for incremental delivery
[bookmark: _Toc445322194][bookmark: _Toc445362526]Topic 6.2: Contracting approaches for an Agile environment (ELO 3)
Contracting approaches can vary in an agile environment. The following are typically true in the traditional and agile environments:
With traditional project management model the three sides are:	Comment by Joe Cooke: Not sure what this is saying. What’s the teaching point? Needs discussion
Scope (fixed)
Time (varied)
Costs (varied)
With the agile model, the three sides are:
Costs (fixed)
Time (fixed)
Scope (varied)

[bookmark: _Toc445322195][bookmark: _Toc445362527]6.21: Cost Reimbursable 	Comment by Joe Cooke: Needs teaching points and discussion
Incentive structure reflects desired performance (benefit or risk depending on application)
What’s challenging?
Lack of clear path to meeting requirements

[bookmark: _Toc445322196][bookmark: _Toc445362528]6.2.2: Fixed Price
What’s challenging?	Comment by Joe Cooke: Re-look at this subtopic division heading. There’s no discussion
Fixed Price Contracts	Comment by Maya Jackson: Need to tailor this to the specifics of the course
Fixed price contracts are intended to reduce the risk to the government. In an agile environment we must evaluate its various types.
Traditional fixed price contracts:
· Best effort
· Deliverable may not be quality
The agile environment has also introduced other types of fixed price contracts:
Graduated Fixed Price Contract:
· The hourly rate is based on finishing early (highest rate), finishing on time (second highest rate), or finishing late (lowest rate). Work is completed early is typically at an overall price is lower as a result of fewer hours used.
· If the project is late, then the vendor gets paid more overall. Both parties share the risks and the rewards based on the delivery schedule.
Fixed Price Work Packages Contract:
· This is a contract where the work is broken down into fixed price work packages.
· This type of contract mitigates risks associated with under- or overestimating a piece of work by decreasing both scope and costs for the work that is being estimated.
· Company can break down their statements of work (SOW) into distinct work packages where each has a fixed price.
· Vendor has the opportunity to estimate the work packages again as a result of the identification of new information and risks.
· Customer can to revisit the prioritization of the work that is left based on developing costs. NEED TO ADD SOURCE DOCUMENTATION HERE
[bookmark: _Toc445322197][bookmark: _Toc445362529]Subtopic 6.3.3: IDIQ/BPA (task order) type of contracts	Comment by Maya Jackson: Additional content necessary to tie to back to agile.

Built in flexibility
What’s challenging?
Incremental delivery undefined until the task order

[bookmark: _Toc445322198][bookmark: _Toc445362530]Topic 6.4: Evaluating Bidders in Agile Contracting Environment (ELO 2)
[bookmark: _Toc445322199][bookmark: _Toc445362531]6.4.1: How well proposal illustrates the chosen/proposed Agile approach
Addressing Agile Myths from Module 3
Understanding of risk identification and mitigation
Evaluating past performance
Both sides understand their roles
Intended cadence of interaction

In the evaluating of bidders in the on contracts it is important to understand how such strategies will comply with Better Buying Power 3.0 (BBP 3.0). The agile environment provides ample opportunity to meet the requirements of BBP 3.0. Particular categories for which the agile environment can meet the requirement are:	Comment by Jackson CIV Maya R: Do we need to provide additional bullet or two under each as an example?
· Use Modular Open Systems Architecture to stimulate innovation.
· Provide draft technical requirements to industry and involve industry in funded concept definition to support requirements definition.
· Emphasize Acquisition Executive, Program Executive Officer, and Program Manager responsibility, authority, and accountability.
· Reduce cycle time while ensuring sound investments.
· Streamline documentation requirements and staff reviews. (agile may be counter to this one)
· Emphasize competition by creating and maintaining competitive environments.
image1.png

image2.png

image3.png

image4.jpeg

image5.png

image6.png

image7.png

