[bookmark: _Toc444847324][bookmark: _Toc445738777]Module 2.0 – What is agile? (Kevin, Heather)
[bookmark: _Toc444847325][bookmark: _Toc445738778]2.0.1 Overview
[bookmark: _Toc444847326]ELOs
ELO 2.1 – Recognize Agile tenets and principles
ELO 2.2 – Recognize the characteristics of an agile environment.
ELO 2.3- Recognize common misconceptions of Agile
[bookmark: _Toc444847327]Assessments
(ELO 1)
MT – Agile principles are the foundation of “what is Agile” more than any one method or practice (ELO 1)
(ELO 2)
There are many methods that are used to implement the 4 Agile tenets and 12 principles, making it challenging sometimes to determine if an Agile implementation is suitable for a particular environment.
(ELO 3)
MT - Agile is not a silver bullet, but there are conditions that could make it appropriate for use in a program (ELO 3)
MT- Agile is not a license to de-value traditional approaches (ELO 3)
[bookmark: _Toc444847328][bookmark: _Toc445738779]Topic 2.1: Backgroundwhat is agile (ELO 1, 2)

[bookmark: _Toc444847329][bookmark: _Toc445738780] Subtopic 2.1.1: What is Agile?
“Agile philosophies promote rapid incremental product deliveries, provide flexibility to respond to changing requirements, and advocate close customer collaboration. A major aspect of Agile is that changes to requirements, design details, or functional capabilities can be incorporated based on customer value, at any stage of the development cycle. While Agile is primarily used on software development projects, Agile methods are being used for complex system and hardware developments as well.” –DoD EVMSIG
 “The origins of Agile Development can be traced back to 1957 to the incremental development of a large simulation by IBM’s Service Bureau Corporation for Motorola. By the mid-1980s the DoD formally recognized the value of “adaptive software development” in the DoD’s Military Standard for Software Development (DOD-STD-1679A). Throughout the 1990s, several other “lightweight” iterative development methods emerged including Dynamic Systems Development Method (DSDM), Scrum, and eXtreme Programming (XP). These methods, along with others, became collectively known as Agile methodologies.” –DoD EVMSIG

[bookmark: _Toc444847331][bookmark: _Toc445738781]Topic 2.2: Agile Tenets and Principles (ELO 1)
[bookmark: _Toc444847332][bookmark: _Toc445738782]Subtopic 2.2.1: Agile Manifesto
The tenets of Agile were codified with the creation of the Agile Manifesto in 2001. The Manifesto emphasizes the following major concepts:
· Individuals and interactions over processes and tools
· It’s not that Agile teams don’t value processes and tools. Tools and processes are necessary for successful product development. Agile teams place more emphasis on the value produced by collocated individuals working in tandem to generate ideas that drive innovation.
· Working software over comprehensive documentation
· Similar to processes and tools, documentation is a necessary part of successful product development. Agile teams, however, place a greater value on the actual development of working software. After all, isn’t the goal of product development to develop a functional product?
· Customer collaboration over contract negotiation
· While contract negotiation is absolutely critical in the DoD environment (as it in nearly all business environments), Agile teams believe that it is more important to work in close conjunction with their customer. This collaboration leads to a unified team working towards a shared goal.
· Responding to change over following a plan
· Agile teams embrace the fact that sometimes things don’t quite go as planned. They emphasize the importance of being able to respond and adapt to change.
[bookmark: _Toc444847333][bookmark: _Toc445738783]Subtopic 2.2.2: Twelve (12) Agile principles
These twelve principles are tied to the four values in the Agile Manifesto.
1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
a. The idea here is not to wait until all the development is complete to integrate, test, and deliver software. It is to deliver a small increment of functional software and use an iterative development process to build upon it.
2. Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.
a. When using Agile methods, it’s important to have enough definition of what is needed but not too much detail so that you cannot adapt when the environment changes.
3. Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.
a. Don’t wait to actually deliver working software. The focus needs to change from document-centric lifecycle to an implementation-centric focus.
4. Business people and developers must work together daily throughout the project.
a. Business people are looked at in a different way in the DoD than in other industries. The business people need to work with the end users to dissolve the difference between who pays for the product and who is using it.
5. Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.
a. It is very difficult follow Agile methodology if there is no trust. Empowered individuals are more effective than those being told how to do things.
6. The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.
a. Colocation provides near-immediate solutions to any problems that arise and allows creativity, teamwork, and innovation to thrive.
7. Working software is the primary measure of progress.
a. This is a shift for DoD mindset that working software essentially takes precedence over some of the other artifacts.
8. Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.
a. Reasonable expectations should be set up with the ends users, customer community, and sponsor community.
9. Continuous attention to technical excellence and good design enhances agility.
a. There should be realistic assumptions as to what the cross-functional team is capable of.
10. Simplicity--the art of maximizing the amount of work not done--is essential.
a. Simplicity refers to not just getting value but also reducing complexity.
11. The best architectures, requirements, and designs emerge from self-organizing teams.
a. Self-organizing teams are given boundaries for architecture.
12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.
a. Continuous communication at Releases or end of sprints. Improvements or modifications on one team may affect other teams and this should be addressed.

[bookmark: _Toc444847334][bookmark: _Toc445738784]Topic 2.3: Agile Methods Landscape (ELO 2)
[bookmark: _Toc444847336][bookmark: _Toc445738785]Subtopic 2.3.1: Lean Thinking and Engineering Principles work in concert to deliver agility
· Take an economic view
· Apply systems thinking
· Assume variability; preserve options
· Build incrementally with fast, integrated learning cycles
· Base milestones on objective evaluation of working systems
· Visualize and limit Work in Process (WIP), reduce batch sizes, and manage queue lengths (apply concepts of product development flow)
· Apply cadence; synchronize with cross-domain planning
· Unlock the intrinsic motivation of knowledge workers
· Decentralize decision-making
[bookmark: _Toc444847337][bookmark: _Toc445738786]Subtopic 2.3.21: Methodologies considered Aligned with Agile Principles
· Scrum
· Scrum is an Agile framework for completing complex projects. Typical attributes of scrum methodology are as follows:	Comment by Kevin McKenna: https://www.scrumalliance.org/why-scrum	Comment by image: Reference: https://msdn.microsoft.com/en-us/library/vs/alm/work/scrum/sprint-planning
· Sprint planning – During the sprint planning meeting, the product owner prioritizes the backlog items developed by the team to be completed during sprint. A sprint an “iteration of work during which an increment of product functionality is implemented” (scrum.org).
· Define sprints – the sprint cadence is defined by the team, and therefore varies among team project.
· Task board – Scrum involves a daily 15 minute meeting to review 3 questions: what was done since the last scrum meeting, what is planned to be done before the next Scrum meeting, and are there any issues preventing the work from being done.” The task board is used during these daily meetings to provide a visual of the sprint tasks. It also summarizes the remaining work to be completed during the sprint.
· Sprint burndown – The sprint burndown chart is used to show the work remaining during the sprint.
· Velocity and forecasting – The velocity chart is how much product backlog effort a team can handle in one sprint. This is used to forecast how much work can be finished in the upcoming sprints.
· The summarize Scrum framework in 30 seconds
· A product owner creates a prioritized wish list called a product backlog.
· During sprint planning, the team pulls a small chunk from the top of that wish list, a sprint backlog, and decides how to implement those pieces.
· The team has a certain amount of time — a sprint (usually two to four weeks) — to complete its work, but it meets each day to assess its progress (daily Scrum).
· Along the way, the ScrumMaster keeps the team focused on its goal.
· At the end of the sprint, the work should be potentially shippable: ready to hand to a customer, put on a store shelf, or show to a stakeholder.
· The sprint ends with a sprint review and retrospective.
· As the next sprint begins, the team chooses another chunk of the product backlog and begins working again.
· Extreme Programming (XP)
· Extreme Programming is successful because it stresses customer satisfaction. Instead of delivering everything you could possibly want on some date far in the future this process delivers the software you need as you need it. Extreme Programming empowers your developers to confidently respond to changing customer requirements, even late in the life cycle.	Comment by Kevin McKenna: http://www.extremeprogramming.org/
· Extreme Programming improves a software project in five essential ways; communication, simplicity, feedback, respect, and courage.
· Extreme Programmers constantly communicate with their customers and fellow programmers.
· They keep their design simple and clean.
· They get feedback by testing their software starting on day one. They deliver the system to the customers as early as possible and implement changes as suggested.
· Every small success deepens their respect for the unique contributions of each and every team member.
· With this foundation Extreme Programmers are able to courageously respond to changing requirements and technology.
· For the XP rules, visit http://www.extremeprogramming.org/rules.html
· Test-driven Development (TDD)
· "Test-driven development" refers to a style of programming in which three activities are tightly interwoven: coding, testing (in the form of writing unit tests) and design (in the form of refactoring).	Comment by Kevin McKenna: http://guide.agilealliance.org/guide/tdd.html
· Rules
· write a "single" unit test describing an aspect of the program
· run the test, which should fail because the program lacks that feature
· write "just enough" code, the simplest possible, to make the test pass
· "refactor" the code until it conforms to the simplicity criteria
· repeat, "accumulating" unit tests over time
· Dynamic Systems Development Method (DSDM)
· What is DSDM?
· <iframe src="https://player.vimeo.com/video/99321882" width="500" height="281" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe>	Comment by Kevin McKenna: embedded video? …or just grab the link.
Also, https://www.dsdm.org/
· KANBAN
· Originated as a means of improving and maintaining production in manufacturing, but has great benefits in SW development too.
· The main tenet of Kanban is imposing limits on the amount of work in progress, thus forcing teams to complete segments of work and not let anything fall behind.
· Scaled Agile Framework (SAFe)	Comment by image: Take out chart. Keep link
· Provides the structure and framework necessary to utilize Agile philosophies on the project, program, and portfolio levels. 	Comment by Kevin McKenna: http://www.scaledagileframework.com/
· This framework breaks down epics into features and stories, which teams work on in Sprints and deliver through Program Increments (PIs) and Release Trains. Also, the portfolio backlog can track how deliverables map to value streams and associated budgets.
· SAFe portfolios, programs, and teams map to Agile tool teams and projects
· SAFe backlogs map to your Agile tools backlogs
· SAFe releases, iterations, and sprints map to iterations
· SAFe value streams and budget map to tags and the Value Area field
[image: http://www.scaledagileframework.com/wp-content/uploads/2015/12/SAFe_4.0_12-14.png]	Comment by image: Contractors to narrate SAFe Diagram using SAFe video. Video link below.

http://www.bing.com/videos/search?q=safe+samurai+agile&&view=detail&mid=1F6A6DFF914484AB57221F6A6DFF914484AB5722&FORM=VRDGAR

[bookmark: _Toc444847338][bookmark: _Toc445738787]2.3.32: Common Agile processes and methods process attributes (ELO 2)	Comment by image: Identify some more agile xxBac

· Regardless of the approach, collaborative teamwork is an essential element. Co-location helps to foster communication, improve teamwork, and incubate innovation. That is not to say Agile is impossible without co-location.
· Time-boxed. The incorporation of a fixed battle rhythm is essential for maintaining operational efficiency.
· Incremental and iterative development provides the ability to
· Continue to add more quickly respond to emerging environments
· Functional users are empowered to clarify requirements, rank order them for implementation, and accept the delivered software.
·

[bookmark: _Toc444158914][bookmark: _Toc445889743][bookmark: _Toc444847341][bookmark: _Toc445738790]Topic 2.4: Comparison between traditional development and Agile development (ELO 2)
[bookmark: _Toc444158915][bookmark: _Toc445889744]2.4.1: Traditional and Agile Development Methods

Although Agile methodologies are based on iterative development as are some of the traditional approaches, Agile and Traditional methodologies have key differences. Traditional approaches use planning as their control mechanism, while Agile models use the feedback from the users as the main control mechanism. The Agile approach provides functionality in iterations and differs in several ways from traditional waterfall software development, which produces a full software product at the end of a sequence of phases. For example, the two approaches differ in (1) the timing and scope of software development and delivery, (2) the timing and scope of project planning, (3) project status testing evaluation, and (4) collaboration.

Table XX provides details on the comparison between Traditional Waterfall and Agile Methodology. In addition, the Graphic XX depicts the steps of each method and how they differ during implementation.

Source: Difference between Agile and Traditional Software Development Methodology http://www.differencebetween.com/difference-between-agile-and-vs-traditional-software-development-methodology/

	
	Steps
	Agile
	Traditional Waterfall

	(1)
	Timing and scope of software development and delivery
	Working software is produced in iterations of typically one to eight weeks in duration, each of which provides a segment of functionality
	Sequential phases of no consistent, fixed duration occur to produce a complete system. Such full system development efforts can take several years

	(2)
	Timing and scope of project planning
	Initial planning regarding cost, scope, and timing is conducted at a high level and are supplemented by more specific plans for each iteration and the overall plans can be revised to reflect experience from completed iterations
	Analysis is documented in detail at the beginning of the project for the entire scope of work. For example, significant effort may be devoted to documenting strategies, project plans, cost and schedule estimates, and requirements for a full system

	(3)
	Project status evaluation
	Evaluation based on software demonstrations. Iterations typically end with a demo for customers and stakeholders of the software produced during each iteration. The demo can reveal requirements that were not fully addressed during the iteration or the discovery of new requirements. These incomplete or newly-identified requirements are queued for possible inclusion in later iterations
	Progress is assessed based on a review of data and documents at predetermined milestones and checkpoints which can occur at the end of a phase, such as the end of requirements definition, or at scheduled intervals. The reviews typically include status reports on work done to date and a comparison of the project’s actual cost and schedule to baseline projections.

	(4)
	Collaboration
	Agile development emphasizes collaboration, during iterations many disciplines work frequently and closely with each other. Teams are often self-directed, meaning tasks and due dates are done within the team and coordinated with project sponsors and stakeholders as needed to complete the tasks
	Customer and technical staff typically work separately, and project tasks are prescribed and monitored by a project manager, who reports to entities such as a program management office

Source: GAO – “SOFTWARE DEVELOPMENT - Effective Practices and Federal Challenges in Applying Agile Methods (July 2012; GAO-12-681)

[image:]
[bookmark: _Toc444158920][bookmark: _Toc445889747]2.4.2: Describe the Agile Approach

Agile is a software development methodology (a group of methodologies) based on the agile manifesto which was developed to solve some shortcomings in traditional software development methodologies. Agile methods are based on giving high priority to the customer participation early in the development cycle. . Instead of focusing on delivering a fixed set of requirements on cost and on schedule, agile methods focus on delivering the highest priority requirements on a fixed cost and schedule. Agile recommends incorporating testing by the customer early and often as possible. Testing is done at each point when a stable version becomes available and occurs from the beginning through to the end of the project. Scrum and Extreme programming are two of the most popular of the Agile methods.
[image:]	Comment by Kevin McKenna: This graphic isn’t always accurate for MDAPs with an EV requirement. Will need to make a note explaining the source of this graphic and its validity in a DoD program
Topic 2.45: Agile Myth-busting (ELO 3)
There are many untrue assertions commonly being made about the Agile approach. Below we will discuss and debunk 8 of these myths associated with an Agile approach – Agile Development in Government: Myths, Monsters, and Fables. Carney, David et al., 2014, Carnegie Mellon University
[bookmark: _Toc444847342][bookmark: _Toc445738791]2.5.1 Subtopic 2.4.1: Agile is a fad
· [image:]
·
· In reality, an Agile approach is accommodated for in DoD guidance (PowerPoint Bullets)Iterative development approaches like Agile have been around for nearly 60 years. “By the mid-1980s the DoD formally recognized the value of ‘adaptive software development’ in the DoD’s Military Standard for Software Development (DOD-STD-1679A).” (McGregor, J.S., March 2016, “Agile and Earned Value Management: A Program Manager’s Desk Guide”)
· In reality, an Agile approach is accommodated for in current DoD guidance as well. (PowerPoint Bullets)
· Agile has only become more prevalent as time goes on, so it is clear that it is not a fad.
[bookmark: _Toc444847343][bookmark: _Toc445738792]2.5.2 Agile won’t work in Government environments
[image:]
· [bookmark: _GoBack]There are many large DoD programs incorporating methods. For example:
· GCSS-J
· PKI
· KMI
· IPPS-A
· NITES-Next
· F-35
· [image:]
2.5.3: Agile only works on small projects
[image:]
· Smaller projects were initially used when the Agile approach was first developed. However, Agile practices can be and have been applied to larger, not co-located projects. There isn’t a size limit for when an Agile method is no longer applicable.
Subtopic 2.4.2: Agile teams don’t document
[image:]
·
·
[bookmark: _Toc444847344][bookmark: _Toc445738793]2.5.4 Subtopic 2.4.3: Agile is “Cowboy” programming
[image:]
·
·
[bookmark: _Toc444847345][bookmark: _Toc445738794]Subtopic 2.4.4: Agile only works in co-located environments
[image:]
· For any program regardless of the approach used, it is better if the participants are co-located. However, this is not the only way an Agile approach can succeed. Data shows more than half of Agile programs are not co-located.
· [bookmark: _Toc444847346][bookmark: _Toc445738795]Subtopic 2.4.5: Agile is just spiral renamed
[image:]

[bookmark: _Toc444847347][bookmark: _Toc445738796]Subtopic 2.4.6: Agile won’t work in DoD or Government environments
[image:]
·
[bookmark: _Toc444847348][bookmark: _Toc445738797]2.5.5 Agile teams don’t document
[image:]
· Agile allows for documentation amount and frequency to be tailored to a specific program. As written in the Agile Manifesto introduction, “the Agile movement is not anti-methodology, in fact, many of us want to restore credibility to the word methodology…. We embrace documentation, but not hundreds of pages of never-maintained and rarely-used tomes. We plan, but recognize the limits of planning in a turbulent environment.”
Subtopic 2.4.7: Agile only works on small projects
[image:]
·
[bookmark: _Toc444847349][bookmark: _Toc445738798]Subtopic 2.54.68: You can’t use EVM on Agile Software Developments
[image:]
· A common misconception is that EVM and Agile are not compatible. While there can be some challenges, Agile and EVM have been implemented successfully on programs. There are several resources available to help programs make important decisions about the concurrent use of EVM and Agile.
· Agile and EVM: A Program Manager’s Desk Guide (March, 2016; McGregor, J.S.)
· An Industry Practice Guide for Agile on EVM Programs (Forthcoming, NDIA IPMD)
· Various papers from CMU’s SEI

image3.png

image4.png

image5.png

image6.jpg

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image1.png

image2.emf

