AGILE SW DEVELOPMENT
CLE 076
Contents
Module 5.0 - Effect of Agile on the ENGINEERING and Test STAFF (Scott, Joe)	2
Overview	2
Introduction	2
Topic 5.1: Systems Engineering – Requirements (ELO 1, 2)	2
5.1.1: Flow of expressing requirements (Essential Scrum, Rubin 2013)	2
5.1.2: Flow and configuration management of requirements, prioritization and releases	5
Topic 5.2: Systems Engineering – Technical Processes (ELO 2)	6
5.2.1: Approaches to managing interaction with Agile Software teams	6
5.2.2: Program baselines in an Agile setting (needs major work)	7
Technical reviews that establish and evolve program baselines	7
Resource: Lean Engineering reference	9
Topic 5.3: Integration and Testing (ELO 3)	9
5.3.1: Use of supplemental test strategy to compliment the high level program TEMP	9
5.3.2: Developmental testing and evaluation in an iterative approach	9
5.3.3: Automated testing and automation support	10
5.3.4: Need for Reaccreditation	11
5.3.5: Cybersecurity recommendations	11
MODULE 1.0 – Introduction (Joe)	5
Topic 1.1: Why agile?	5
1.1.1 We need to change how we’re doing things	5
1.1.2 The industry has recognized this and has been using agile methods for quite awhile	5
1.1.3 Except for the threat, the DOD is not so different than the Commercial world	5
Topic 1.2: Agile Development growth in the DoD	6
1.2.1 Interest is growing	7
1.2.2 What does “becoming Agile” mean to the DoD	7
Topic 1.3: What to expect from this course	8
Module 2.0 – What is agile? (Kevin, Heather)	9
Overview	9
Topic 2.1: what is agile (ELO 1, 2)	9
2.1.1: What is Agile?	9
Topic 2.2: Agile Tenets and Principles (ELO 1)	9
2.2.1: Agile Manifesto	9
2.2.2: Twelve (12) Agile principles	10
Topic 2.3: Agile Methods Landscape (ELO 2)	11
2.3.1: Lean Thinking and Engineering Principles work in concert to deliver agility	11
2.3.2: Methodologies considered Agile	11
Topic 2.4: Common Agile processes and methods (ELO 2))	11
2.4.1 Agile is a team approach	11
2.4.2 Observable characteristics of Agile Implementations	12
Topic 2.5: Agile Myth-busting (ELO 3)	12
Subtopic 2.5.1: Agile is a fad	12
Subtopic 2.5.2: Agile teams don’t document	13
Subtopic 2.5.3: Agile is “Cowboy” programming	13
Subtopic 2.5.4: Agile only works in co-located environments	14
Subtopic 2.5.5: Agile is just spiral renamed	14
Subtopic 2.5.6: Agile won’t work in DoD or Government environments	15
Subtopic 2.5.7: Agile only works on small projects	15
Subtopic 2.5.8: You can’t use EVM on Agile Software Developments	16
Module 3.0 - Basic Agile Concepts (when and where to apply it) (Kevin, Sabina)	17
Overview	17
Topic 3.1: Recent Guidance related to Agile (ELO 1)	17
3.1.1: US Digital Services Agency – Digital Playbook	17
3.1.2: GSA – 18F Digital Services	17
3.1.3: DoDI 5000.02 acquisition lifecycle models	17
3.1.4: CJSCI 3170.01I JCIDS manual / IT Box	17
3.1.5: Better Buying Power 3.0 tenets	17
Topic 3.2: Defense contracting trends in the use of Agile (ELO 1)	17
3.2.1: System integrators supporting DoD	17
3.1.3: Agile is often used within the context of a traditional systems engineering / acquisition lifecycle, especially when introduced mid-contract	18
3.1.4:Sometime use of Agile principles begins in a covert way due to perception of organizational resistance	18
3.1.5:Agile projects and teams use metrics to manage efficient delivery	18
3.1.6: Industry partners are using established frameworks that scale Agile tenets to larger projects typical in Defense	18
Topic 3.3: Differences between traditional development and Agile development (ELO 2)	18
3.3.1: Waterfall and Agile Development Methods have Risks	18
3.3.2: The Traditional approach is hardware centric	18
3.3.3: Commonalities of Agile and Traditional approaches	18
3.3.4: Describe the Agile Approach	18
3.3.5: There are times when Agile does not apply	19
3.3.6: When should it not be considered?	19
Module 4.0 - Effect of Agile on the DoD Program Office (Joe)	20
Overview	20
Introduction	20
Topic 4.1 Adopting an Agile Program Approach (ELO 4.1)	21
4.1.1 Types of programs where agile applies	21
4.1.2 General considerations for adopting an Agile approach	21
4.1.3 Program risks to consider before adopting an agile approach (ELO 4.1)	21
Topic 4.2: Stakeholders (ELO 2)	23
4.2.1 Stakeholder importance in an Agile environment	23
4.2.2 Who are the key stakeholders?	23
4.2.3 Prioritization of user requirements	23
4.2.4 Assignment of user requirements to releases and iterations	23
4.2.5 User involvement in acceptance of implemented requirements	23
Topic 4.3: PMO Staffing & Roles	23
4.3.1 What is the overall impact to the PMO organization in an Agile environment?	23
4.3.2 Impact to Program Office roles	23
Topic 4.4: Technical Reviews (ELO 3)	24
4.4.1 Technical reviews in an Agile Environment	24
4.4.3 Agile technical review questions	25
4.4.2 Recommendations for managing technical reviews	25
4.4.3 Other program reviews	25
Module 5.0 - Effect of Agile on the ENGINEERING and Test STAFF (Scott, Joe)	27
Overview	27
Introduction	27
Topic 5.1: Systems Engineering – Requirements (ELO 1, 2)	27
5.1.1: Flow of expressing requirements (Essential Scrum, Rubin 2013)	27
5.1.2: Flow and configuration management of requirements, prioritization and releases	30
Topic 5.2: Systems Engineering – Technical Processes (ELO 2)	31
5.2.1: Approaches to managing interaction with Agile Software teams	31
5.2.2: Program baselines in an Agile setting (needs major work)	32
Technical reviews that establish and evolve program baselines	32
Resource: Lean Engineering reference	34
Topic 5.3: Integration and Testing (ELO 3)	34
5.3.1: Use of supplemental test strategy to compliment the high level program TEMP	34
5.3.2: Developmental testing and evaluation in an iterative approach	34
5.3.3: Automated testing and automation support	35
5.3.4: Need for Reaccreditation	36
5.3.5: Cybersecurity recommendations	36
Module 6.0: Effects of Agile on Pre-Contract Award (Heather, Scott)	37
Overview	37
Topic 6.1: Writing Acquisition Strategies and RFP’s to accommodate Agile philosophy (ELO 1)	37
6.1.1: Types of Acq. Strategies	37
6.1.2: Level of involvement of the Govt	39
6.1.3: Applying flexibility within the acquisition life cycle to accommodate agile approaches when applicable	39
6.1.4: allowing for Agile Philosophies in RFP’s (ELOs 1,2) 	39
Topic 6.2: Contracting approaches for an Agile environment (ELO 3)	39
6.21: Cost Reimbursable	40
6.2.2: Fixed Price	40
Subtopic 6.3.3: IDIQ/BPA (task order) type of contracts	41
Topic 6.4: Evaluating Bidders in Agile Contracting Environment (ELO 2)	41
Module 6.0: Effects of Agile on Pre-Contract Award (Heather, Scott)	42
Overview	42
Topic 6.1: Writing Acquisition Strategies and RFP’s to accommodate Agile philosophy (ELO 1)	42
6.1.1: Types of Acq. Strategies Approaches	42
6.1.2: Level of involvement of the Govt	44
6.1.3: Applying flexibility within the acquisition life cycle to accommodate agile approaches when applicable	44
6.1.4: allowing for Agile Philosophies in RFP’s (ELOs 1,2) 	44
Topic 6.2: Contracting approaches for an Agile environment (ELO 3)	45
6.21: Cost Reimbursable	45
6.2.2: Fixed Price	45
Subtopic 6.3.3: IDIQ/BPA (task order) type of contracts	46
Topic 6.4: Evaluating Bidders in Agile Contracting Environment (ELO 2)	46

the DoD
this class of
[bookmark: _Toc445362039][bookmark: _Toc444847109][bookmark: _Toc444847103][bookmark: _Toc444847121][bookmark: _Toc444158967][bookmark: _Toc445891956]to functionfunctionbe considereda program. Module 5.0 - Effect of Agile on the ENGINEERING and Test STAFF (Scott, Joe)
[bookmark: _Toc444158968][bookmark: _Toc445891957]Overview
[bookmark: _Toc444158969]ELOs
ELO 5.1 - Identify how program technical requirements are managed in Agile contracting settings
ELO 5.2 - Identify how program baselines are managed in an Agile environment
ELO 5.3 - Recognize key factors for developmental testing success in an Agile environment
ELO 5.4 - Identify different ways that System Engineering Technical processes interact with Agile Software approaches
[bookmark: _Toc444158970]Assessments
MT - A requirements baseline that is at too low a level of abstraction is unproductive for an Agile contract setting (ELO 5.1)
MT - A capability-based Work Breakdown Structure makes developing and refining requirements in an Agile setting easier than using the more hardware-focused, but typical, component-based WBS (ELO 5.1)
LP – Agile projects gradually add detail to the configuration baselines (functional, allocated and technical) in each iteration instead of completing each baseline at a technical review. (ELO 5.2)
MT - Automated testing is a necessity, not an option, for any decent-sized Agile program (ELO 5.3)
MT – Program managers may choose to have systems engineers take on the role of the product owner. (ELO 5.4)
LP – Systems engineers can apply Agile methods and principles to their own approach to work products. (ELO 5.4)
[bookmark: _Toc444158971][bookmark: _Toc445891958]Introduction
The program office technical team will recognize Agile concepts as an adaptation of the work they normally do with adjustments for an iterative approach. Although much of the work will stay the same, the sequencing of the work will change significantly. The engineering and test staff will engage in frequent re-prioritization to ensure that the work being performed in each iteration will provide the most value to the program. Engineering and test staff will directly influence the keys to success for the development effort, as they always have, but in ways they may not have been able to before.
[bookmark: _Toc445891959]Topic 5.1: Systems Engineering – Requirements (ELO 1, 2)
[bookmark: _Toc444158972][bookmark: _Toc445891960]5.1.1: Flow of expressing requirements (Essential Scrum, Rubin 2013)
[bookmark: _Toc444158973]Using a user story to flesh out details of requirements
Most Agile programs use stories (user-for operator-facing functions, or technical-for non-functional product attributes) to describe requirements from the user’s perspective in a conversational format. They express a desired business (in DoD, this is often focused on operational) value at a level of granularity that matches what the user needs to accomplish. The user story format helps provide just enough definition about the user’s need to understand how to prioritize it among other user stories and start the conversation about the requirement when it comes time to design, build and test the capability in more detail in an iteration. Agile methodologies ensure that the implementation team will have access to the user when they need more conversation about specific details.

[bookmark: _Toc444158974]User story format: as a (user role) I want to (goal) so that (benefit)
Traditional requirements specifications often use detailed “system shall” statements like, “The system shall allow an authorized user to transfer money from one of the user’s bank accounts to another” and “The system shall notify the user when transferring funds out of a savings account that exceeding the monthly number of transfers will lead to a maintenance fee.” A user story might say: “As an account holder, I want to manage the distribution of funds across my banking accounts so that I can earn interest whenever I can and avoid maintenance fees.

	User stories are for conversation and communication—too detailed will hinder communication
User stories are intended for conversation and communication without documenting every single detail that needs to be implemented in the software. Putting too much detail into each user story—or creating too many user stories to ensure every detail gets covered—will actually hinder communication. With too much detail, the implementation team and the user spend more time on refining the documentation of the user story instead of on understanding what needs to be done and getting it done.
Agile teams collect user stories at different levels of business value to the organization. Some user stories will be just the right size for the implementation team to define, build and test groups of them in a single iteration. Other user stories—often called epics—may depict the business at a higher level of abstraction, supported by related user that describe the user interaction. Large Agile projects often organize user stories around these epics and the product features that will be delivered to the user. The organization of user stories, features and epics will vary by Agile project. Very complex weapon systems, for example, will have a tiered structure of multiple layers to account for the communication that needs to occur across different stakeholder groups. If using a scaling framework like SAFe (Scaled Agile Framework), the breakdown would be Business or Enabling Epics, Capabilities, Features, and Stories.
Agile teams often keep user stories at a higher level of abstraction when they are not very high on the priority list for implementation. Spending effort to collect more detail on these user stories would take away effort from working on the user stories that need more detail for the current or the next iteration. This is probably the biggest difference in requirements management for a program office. The practice of only detailing the stories that will be implemented in the near term makes the overall requirements list for the program look disjointed – many of the longer term requirements will not have much detail at all, while those being implemented in the next couple of iterations will be at much greater levels of detail.

	INVEST: independent, negotiable, valuable, estimatable, small (or sized appropriately), testable
		Independent: one user story should have as few dependencies as possible to others
		Negotiable: user story describes who, what and why, not the how
		Valuable: otherwise the user story doesn’t need to be implemented
		Estimatable: so that it can be assigned it to be worked in an iteration
		Small / Sized Appropriately: scope and detail to support work in the iteration (note – can be an “epic” user story but if so, scope and detail support work in the iteration through related user stories)
		Testable by pass/fail that support definition of done
Bill Wake [Wake, William C. 2003 “INVEST in Good Stories, and SMART Tasks.”] uses the INVEST acrostic to describe best practices for developing good user stories.
Independent user stories have as few dependencies as possible on other user stories so that they can be described and delivered separately.
Negotiable user stories describe the who, what and why of the business need without prescribing how the business need must be bet. That way, the implementation team and the user can negotiate how the need will be met in a way that delivers the best business value for the effort on the user story. Adding in the who and the why to a requirement is a big shift from traditional “shall statements” in most DoD specifications. Adding the who and the why provides an opportunity for the Program Office to help prioritize implementation of requirements in a way that is different from working from apparently equivalent requirements in a detailed specification.
Valuable user stories describe a need that will provide business/operational value. If a user story doesn’t provide value, it should be taken out scope of the project; the sooner, the better. This has never been a systematic practice in traditional acquisition. To take advantage of prioritizing requirements in a way that could result in requirements being taken off the contract as the learning about the system implementation accelerates, the Program Office needs more than engineering skill. They also need contract and oversight practices that don’t create barriers for requirements adjustment.
Estimatable user stories have enough description in them that the implementation can estimate the level of effort required to clarify, design, build and test a solution to the business need. Agile teams often use story points to estimate the complexity of a user story. Story point estimates can useful for other activities, such as measuring productivity and planning future work.
Small (or sometimes Sized Appropriately) user stories ensure the scope and detail of the user story support the work. User stories in scope of the next iteration need to have a level of detail that will support the upcoming clarification, design, build and test efforts. Meanwhile, an epic may be larger in scope but should still be sized appropriately to be useful for organizing the user stories. Looking at story points across all the user stories may help the team identify when some user stories with high or low story points might be worth a second look to refine or reorganize.
Testable user stories provide the implementation team and the user with clear pass/fail criteria that allow the team to know that the user story meets the definition of done.

[bookmark: _Toc444158975]	User stories trace vertically to high-level system capabilities through the stated goal and benefit
	Once assigned to an iteration, user stories will trace horizontally to scheduled development work efforts and verification through user testing and acceptance
Like traditional requirements statement, user stories trace back to high-level system capabilities and forward to test and validation artifacts that confirm pass/fail implementation. Also, managing the project by a capability-based work breakdown structure (WBS) allows user stories to trace to scheduled effort in the program’s integrated master schedule.
[bookmark: _Toc445891961]5.1.2: Flow and configuration management of requirements, prioritization and releases

	User stories and epics are usually organized into features and releases (methods may vary)
	User stories are prioritized overall in the product backlog
User stories are selected for work in the next iteration based on priority and get assigned to the iteration backlog (sprint backlog)
	Release planning forecasts work across several upcoming iterations to plan for packages that deliver value to the end user at planned intervals

Suggested Content:
[image:]
[image:]
[bookmark: _Toc444158977][bookmark: _Toc445891962]Topic 5.2: Systems Engineering – Technical Processes (ELO 2)
[bookmark: _Toc444158978][bookmark: _Toc445891963]5.2.1: Approaches to managing interaction with Agile Software teams

[bookmark: _Toc444158979]Systems Engineers Acting as Agile Product Owner (Scrum specific) [SEI course content]
Product owner responsibilities that may be assigned to systems engineering staff:
· Write epics, user, and technical stories (requirements) that start the conversation with developers
· Work with end users, testers, and other stakeholders to establish Acceptance Criteria for the stories and epics
· Prioritize and rank order epics and stories
· Participate in release planning events that map the stories into implementation packages
· Establish Release Goals for each release that are objective and measurable
· Establish Iteration (or Sprint) goals that are objective and measurable
· Proactively monitor developer progress via physical or electronic Information Radiators
· Evaluate the satisfaction of Sprint and Release goals through attendance at Sprint and Release Reviews
· “Accept” the Release for further integration and system testing or delivery into a sandbox
· Answer (as often as daily) questions from developers to clarify their understanding of a story or its acceptance criteria
· Advocate for the product to business or operational management who are investing in the product
	
[bookmark: _Toc444158980]Systems Engineers Acting as Agile Systems Architect (is this SAFe specific?)
Source: http://www.agilearchitect.org/agile/role.htm (must be British)
Agile systems architecture responsibilities that may be assigned to systems engineering staff:
Understanding the requirements - identifying the stakeholders, helping to analyse the requirements and extracting those of architectural significance
Formulating the design - creating a solution structure which will meet the various requirements, balancing the goals and constraints on the solution,
Communicating the architecture - making sure that everyone understands the architecture. Different people have different viewpoints, so the architect has to present various views of the system appropriate to different audiences,
Supporting the developers – making sure that the developers are able to realise the architecture, by a combination of mentoring and direct involvement,
Verifying the implementation – ensuring the delivered system is consistent with the agreed architecture, and will meet the requirements
[bookmark: _Toc444158981]Systems Engineers Applying Agile Methods to Their Own Work
[image:]	Engineers can apply lessons learned from Agile software development to organizational processes and work products
[bookmark: _Toc444158982][bookmark: _Toc445891964]5.2.2: Program baselines in an Agile setting (needs major work)
[bookmark: _Toc444158983][bookmark: _Toc445891965]Technical reviews that establish and evolve program baselines	Comment by Kevin McKenna: Maybe I don’t understand exactly what is meant by “technical reviews,” but I would think a program baseline has long since been established once a technical review takes place. I agree with the idea of the program baseline evolving though.
	Agile applies V-model Systems Engineering decomposition and realization steps in an incremental approach.
	Traditional V-model establishes the functional baseline once requirements are complete (System Requirements Review or System Functional Review).
	Traditional V-model establishes the allocated baseline at Preliminary Design Review and the product baseline at Critical Design Review.
	Reference V-model, dated 2014 – not sure if the configuration baseline terms have now changed in DAU-speak.
[image: https://dap.dau.mil/acquipedia/PublishingImages/AQPLEG/Systems%20Engineering%20Process%20Figure%204.jpg]
Agile approach completes requirements, design, implementation and user validation (usually not in the operational environment) all within the same iteration. Therefore, each iteration adds to the functional, allocated, and product baselines as it progresses.
[image:]Incremental delivery eliminates major-event analysis of each configuration baseline as it is developed and replaces it with continual management of configuration baseline.
[bookmark: _Toc444158985][bookmark: _Toc445891966]Resource: Lean Engineering reference	Comment by Craig Smith: I think this moved to Section 2

[bookmark: _Toc444158986][bookmark: _Toc445891967]Topic 5.3: Integration and Testing (ELO 3)
[bookmark: _Toc444158987][bookmark: _Toc445891968]5.3.1: Use of supplemental test strategy to compliment the high level program TEMP
[bookmark: _Toc444158988]Deal with Measures of Effectiveness for traceability
	High-level TEMP will describe how test planning will ensure MOEs are established during the flow of an iteration, for the user stories in scope of the increment
[bookmark: _Toc444158989]Integration approaches for DT/OT activities
	Operational testing strategy should reflect that smaller incremental releases generally involve lower risk and require less operational testing to reduce risk prior to release. Based on risk assessment OT may leverage DT data and conduct operational assessment of the system in operation.
[bookmark: _Toc444158990][bookmark: _Toc445891969]5.3.2: Developmental testing and evaluation in an iterative approach
[bookmark: _Toc444158991]Cybersecurity staff involvement
Cybersecurity should be baked into the overall approach to the program; staffing approach should influence continual cyber involvement
[bookmark: _Toc444158992]Ensuring integrity of the definition of done – including cyber
Iteration reviews should leverage the definition of done to ensure that cyber is baked in.
Definition of done: [SEI content]
Definition of Done (DoD) is a Key Concept for a Product Owner
What is the Definition of Done (DoD)? Definition of Done is an explicit declaration of the completion criteria for some aspect of an Agile lifecycle. DoD can be applied to an individual artifact (e.g., a user story), a sprint (as a companion to the Sprint Goal), or a release. Why do we need a specific Definition of Done? One of the ways that Agile methods achieve the speed they are known for is that developers have confidence that when they are “done” with some task or artifact, it’s safe to move on to the next one. The explicit Definition of Done is a key contributor to enabling this confidence.
When is the Definition of Done established? The DoD is established prior to the work being done (for a User Story, DoD is established before the Product Backlog items are estimated; for a Release DoD is established prior to the completion of Release Planning, etc.) When do you determine that the Definition of Done has been met? Verifying that the DoD has been met depends on what DoD is being applied to. If DoD is being applied to an artifact, it is verified before the item is marked as “Done” in whatever Information Radiator the team is using to communicate status. If DoD is being applied to an Agile lifecycle phase, like the Sprint Goal, it would be determined during the review meeting that occurs at the end of the sprint or release. Other Notes on Definition of Done: There is no “universal” Definition of Done. However, a good definition of done should follow SMART rules: Specific, Measurable, Actionable, Relevant, and Timely. Usually the time is predetermined (e.g. your sprint timebox) Make the definition public and review it in between sprints, releases, etc. —reviewing the DoD as part of the Retrospective is a frequent approach, or including a review during the Sprint Planning Meeting.
[bookmark: _Toc444158993]Leverage multiple sources of evidence (unit testing, demos, traditional system testing)
[bookmark: _Toc444158994][bookmark: _Toc445891970]5.3.3: Automated testing and automation support
Agile projects need automated testing (usually regression and unit testing) in order to support frequent integration builds and discover software defects as quickly as possible. Automated regression testing is key to success in an Agile effort.
Automated testing is complementary to other defect-finding disciplines such as peer reviews of design, measurement of code and branch coverage/glass box testing.
[bookmark: _Toc444158995][bookmark: _Toc445891971]5.3.4: Need for Reaccreditation
[image:]
[bookmark: _Toc444158996][bookmark: _Toc445891972]5.3.5: Cybersecurity recommendations
[image:]

image1.png

image2.png

image3.png

image4.jpeg

image5.png

image6.png

image7.png

